Skip to main content
Log in

Transient outward potassium channel: a heart failure mediator

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Transient outward K+ current (I to) plays a crucial role in shaping the early phase of repolarization and setting the plateau voltage level of action potential. As a result, it extensively affects membrane current flow in the plateau window. A great body of evidence illustrates a transmural gradient of I to within ventricular wall with much higher density in epicardial than endocardial myocytes, which is important for the physiological ventricular repolarization. In heart failure (HF), this gradient is diminished due to a greater reduction of I to in epicardial myocytes. This attenuates the transmural gradient of early repolarization, facilitating conduction of abnormal impulses originated in the epicardium. In addition, I to reduction prolongs action potential duration and increases intercellular Ca2+, thus affecting Ca2+ handling and the excitation–contraction coupling. Furthermore, increased intercellular Ca2+ could activate CaMKII and calcineurin whose role in cardiac hypertrophy and HF development has been well established. Based on the impact of I to reduction on electrical activity, signal conduction, calcium handling and cardiac function, restoration of I to is likely a potential therapeutic strategy for HF. In this review, we summarize the physiological and pathological role of cardiac I to channel and the potential impact of I to restoration on HF therapy with an emphasis of recent novel findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Judd SE, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Mackey RH, Magid DJ, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER 3rd, Moy CS, Mussolino ME, Neumar RW, Nichol G, Pandey DK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Wong ND, Woo D, Turner MB, American Heart Association Statistics C, Stroke Statistics S (2014) Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation 129(3):e28–e292

    PubMed  Google Scholar 

  2. Roger VL, Weston SA, Redfield MM, Hellermann-Homan JP, Killian J, Yawn BP, Jacobsen SJ (2004) Trends in heart failure incidence and survival in a community-based population. JAMA 292(3):344–350

    CAS  PubMed  Google Scholar 

  3. Levy D, Kenchaiah S, Larson MG, Benjamin EJ, Kupka MJ, Ho KK, Murabito JM, Vasan RS (2002) Long-term trends in the incidence of and survival with heart failure. N Engl J Med 347(18):1397–1402

    PubMed  Google Scholar 

  4. Suter LG, Li SX, Grady JN, Lin Z, Wang Y, Bhat KR, Turkmani D, Spivack SB, Lindenauer PK, Merrill AR, Drye EE, Krumholz HM, Bernheim SM (2014) National patterns of risk-standardized mortality and readmission after hospitalization for acute myocardial infarction, heart failure, and pneumonia: update on publicly reported outcomes measures based on the 2013 release. J Gen Intern Med 29(10):1333–1340

    PubMed Central  PubMed  Google Scholar 

  5. Wang Y, Hill JA (2010) Electrophysiological remodeling in heart failure. J Mol Cell Cardiol 48(4):619–632

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Dudel J, Peper K, Rudel R, Trautwein W (1967) The dynamic chloride component of membrane current in Purkinje fibers. Pflugers Arch Gesamte Physiol Menschen Tiere 295(3):197–212

    CAS  PubMed  Google Scholar 

  7. Reuter H (1968) Slow inactivation of currents in cardiac Purkinje fibres. J Physiol 197(1):233–253

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Peper K, Trautwein W (1968) A membrane current related to the plateau of the action potential of Purkinje fibers. Pflugers Arch 303(2):108–123

    CAS  PubMed  Google Scholar 

  9. Josephson IR, Sanchez-Chapula J, Brown AM (1984) Early outward current in rat single ventricular cells. Circ Res 54(2):157–162

    CAS  PubMed  Google Scholar 

  10. McAllister RE, Noble D, Tsien RW (1975) Reconstruction of the electrical activity of cardiac Purkinje fibres. J Physiol 251(1):1–59

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Giles WR, van Ginneken AC (1985) A transient outward current in isolated cells from the crista terminalis of rabbit heart. J Physiol 368:243–264

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Fedida D, Giles WR (1991) Regional variations in action potentials and transient outward current in myocytes isolated from rabbit left ventricle. J Physiol 442:191–209

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Fozzard HA, Hiraoka M (1973) The positive dynamic current and its inactivation properties in cardiac Purkinje fibres. J Physiol 234(3):569–586

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Coraboeuf E, Carmeliet E (1982) Existence of two transient outward currents in sheep cardiac Purkinje fibers. Pflugers Arch 392(4):352–359

    CAS  PubMed  Google Scholar 

  15. Marban E, Tsien RW (1982) Effects of nystatin-mediated intracellular ion substitution on membrane currents in calf purkinje fibres. J Physiol 329:569–587

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Kass RS, Scheuer T, Malloy KJ (1982) Block of outward current in cardiac Purkinje fibers by injection of quaternary ammonium ions. J Gen Physiol 79(6):1041–1063

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Kenyon JL, Gibbons WR (1979) 4-Aminopyridine and the early outward current of sheep cardiac Purkinje fibers. J Gen Physiol 73(2):139–157

    CAS  PubMed  Google Scholar 

  18. Tseng GN, Hoffman BF (1989) Two components of transient outward current in canine ventricular myocytes. Circ Res 64(4):633–647

    CAS  PubMed  Google Scholar 

  19. Zygmunt AC, Gibbons WR (1991) Calcium-activated chloride current in rabbit ventricular myocytes. Circ Res 68(2):424–437

    CAS  PubMed  Google Scholar 

  20. Apkon M, Nerbonne JM (1991) Characterization of two distinct depolarization-activated K+ currents in isolated adult rat ventricular myocytes. J Gen Physiol 97(5):973–1011

    CAS  PubMed  Google Scholar 

  21. Kukushkin NI, Gainullin RZ, Sosunov EA (1983) Transient outward current and rate dependence of action potential duration in rabbit cardiac ventricular muscle. Pflugers Arch 399(2):87–92

    CAS  PubMed  Google Scholar 

  22. Tseng GN, Jiang M, Yao JA (1996) Reverse use dependence of Kv4.2 blockade by 4-aminopyridine. J Pharmacol Exp Ther 279(2):865–876

    CAS  PubMed  Google Scholar 

  23. Wettwer E, Amos G, Gath J, Zerkowski HR, Reidemeister JC, Ravens U (1993) Transient outward current in human and rat ventricular myocytes. Cardiovasc Res 27(9):1662–1669

    CAS  PubMed  Google Scholar 

  24. Greenstein JL, Wu R, Po S, Tomaselli GF, Winslow RL (2000) Role of the calcium-independent transient outward current I to1 in shaping action potential morphology and duration. Circ Res 87(11):1026–1033

    CAS  PubMed  Google Scholar 

  25. Sah R, Ramirez RJ, Oudit GY, Gidrewicz D, Trivieri MG, Zobel C, Backx PH (2003) Regulation of cardiac excitation–contraction coupling by action potential repolarization: role of the transient outward potassium current (I to). J Physiol 546(Pt 1):5–18

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Schmitt N, Grunnet M, Olesen SP (2014) Cardiac potassium channel subtypes: new roles in repolarization and arrhythmia. Physiol Rev 94(2):609–653

    CAS  PubMed  Google Scholar 

  27. Papazian DM, Schwarz TL, Tempel BL, Jan YN, Jan LY (1987) Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science 237(4816):749–753

    CAS  PubMed  Google Scholar 

  28. Butler A, Wei AG, Baker K, Salkoff L (1989) A family of putative potassium channel genes in Drosophila. Science 243(4893):943–947

    CAS  PubMed  Google Scholar 

  29. Wei A, Covarrubias M, Butler A, Baker K, Pak M, Salkoff L (1990) K+ current diversity is produced by an extended gene family conserved in Drosophila and mouse. Science 248(4955):599–603

    CAS  PubMed  Google Scholar 

  30. Chandy KG (1991) Simplified gene nomenclature. Nature 352(6330):26

    CAS  PubMed  Google Scholar 

  31. Doyle DA, Morais CJ, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280(5360):69–77

    CAS  PubMed  Google Scholar 

  32. Pongs O (1992) Molecular biology of voltage-dependent potassium channels. Physiol Rev 72(4 Suppl):S69–S88

    CAS  PubMed  Google Scholar 

  33. Oudit GY, Kassiri Z, Sah R, Ramirez RJ, Zobel C, Backx PH (2001) The molecular physiology of the cardiac transient outward potassium current (I to) in normal and diseased myocardium. J Mol Cell Cardiol 33(5):851–872

    CAS  PubMed  Google Scholar 

  34. Nerbonne JM, Kass RS (2005) Molecular physiology of cardiac repolarization. Physiol Rev 85(4):1205–1253

    CAS  PubMed  Google Scholar 

  35. Patel SP, Campbell DL (2005) Transient outward potassium current, ‘I to’, phenotypes in the mammalian left ventricle: underlying molecular, cellular and biophysical mechanisms. J Physiol 569(Pt 1):7–39

    PubMed Central  CAS  PubMed  Google Scholar 

  36. van der Heyden MA, Wijnhoven TJ, Opthof T (2006) Molecular aspects of adrenergic modulation of the transient outward current. Cardiovasc Res 71(3):430–442

    PubMed  Google Scholar 

  37. Niwa N, Nerbonne JM (2010) Molecular determinants of cardiac transient outward potassium current (I to) expression and regulation. J Mol Cell Cardiol 48(1):12–25

    PubMed Central  CAS  PubMed  Google Scholar 

  38. MacKinnon R (1991) Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature 350(6315):232–235

    CAS  PubMed  Google Scholar 

  39. Jan LY, Jan YN (1992) Structural elements involved in specific K+ channel functions. Annu Rev Physiol 54:537–555

    CAS  PubMed  Google Scholar 

  40. Snyders DJ (1999) Structure and function of cardiac potassium channels. Cardiovasc Res 42(2):377–390

    CAS  PubMed  Google Scholar 

  41. Fink M, Duprat F, Lesage F, Heurteaux C, Romey G, Barhanin J, Lazdunski M (1996) A new K+ channel β subunit to specifically enhance Kv2.2 (CDRK) expression. J Biol Chem 271(42):26341–26348

    CAS  PubMed  Google Scholar 

  42. Shi G, Nakahira K, Hammond S, Rhodes KJ, Schechter LE, Trimmer JS (1996) β subunits promote K+ channel surface expression through effects early in biosynthesis. Neuron 16(4):843–852

    CAS  PubMed  Google Scholar 

  43. Nagaya N, Papazian DM (1997) Potassium channel α and β subunits assemble in the endoplasmic reticulum. J Biol Chem 272(5):3022–3027

    CAS  PubMed  Google Scholar 

  44. Trimmer JS (1998) Regulation of ion channel expression by cytoplasmic subunits. Curr Opin Neurobiol 8(3):370–374

    CAS  PubMed  Google Scholar 

  45. Yang EK, Alvira MR, Levitan ES, Takimoto K (2001) Kvβ subunits increase expression of Kv4.3 channels by interacting with their C termini. J Biol Chem 276(7):4839–4844

    CAS  PubMed  Google Scholar 

  46. Aimond F, Kwak SP, Rhodes KJ, Nerbonne JM (2005) Accessory Kvβ1 subunits differentially modulate the functional expression of voltage-gated K+ channels in mouse ventricular myocytes. Circ Res 96(4):451–458

    CAS  PubMed  Google Scholar 

  47. Perez-Garcia MT, Lopez-Lopez JR, Gonzalez C (1999) Kvβ1.2 subunit coexpression in HEK293 cells confers O2 sensitivity to Kv4.2 but not to Shaker channels. J Gen Physiol 113(6):897–907

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Peri R, Wible BA, Brown AM (2001) Mutations in the Kvβ2 binding site for NADPH and their effects on Kv1.4. J Biol Chem 276(1):738–741

    CAS  PubMed  Google Scholar 

  49. Deschenes I, Tomaselli GF (2002) Modulation of Kv4.3 current by accessory subunits. FEBS Lett 528(1–3):183–188

    CAS  PubMed  Google Scholar 

  50. Castellino RC, Morales MJ, Strauss HC, Rasmusson RL (1995) Time- and voltage-dependent modulation of a Kv1.4 channel by a β-subunit (Kvβ3) cloned from ferret ventricle. Am J Physiol 269(1 Pt 2):H385–H391

    CAS  PubMed  Google Scholar 

  51. Majumder K, De Biasi M, Wang Z, Wible BA (1995) Molecular cloning and functional expression of a novel potassium channel β-subunit from human atrium. FEBS Lett 361(1):13–16

    CAS  PubMed  Google Scholar 

  52. Morales MJ, Castellino RC, Crews AL, Rasmusson RL, Strauss HC (1995) A novel β subunit increases rate of inactivation of specific voltage-gated potassium channel α subunits. J Biol Chem 270(11):6272–6277

    CAS  PubMed  Google Scholar 

  53. Pruunsild P, Timmusk T (2005) Structure, alternative splicing, and expression of the human and mouse KCNIP gene family. Genomics 86(5):581–593

    CAS  PubMed  Google Scholar 

  54. An WF, Bowlby MR, Betty M, Cao J, Ling HP, Mendoza G, Hinson JW, Mattsson KI, Strassle BW, Trimmer JS, Rhodes KJ (2000) Modulation of A-type potassium channels by a family of calcium sensors. Nature 403(6769):553–556

    CAS  PubMed  Google Scholar 

  55. Rosati B, Pan Z, Lypen S, Wang HS, Cohen I, Dixon JE, McKinnon D (2001) Regulation of KChIP2 potassium channel β subunit gene expression underlies the gradient of transient outward current in canine and human ventricle. J Physiol 533(Pt 1):119–125

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Patel SP, Campbell DL, Morales MJ, Strauss HC (2002) Heterogeneous expression of KChIP2 isoforms in the ferret heart. J Physiol 539(Pt 3):649–656

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Deschenes I, DiSilvestre D, Juang GJ, Wu RC, An WF, Tomaselli GF (2002) Regulation of Kv4.3 current by KChIP2 splice variants: a component of native cardiac I to? Circulation 106(4):423–429

    CAS  PubMed  Google Scholar 

  58. Rosati B, Grau F, Rodriguez S, Li H, Nerbonne JM, McKinnon D (2003) Concordant expression of KChIP2 mRNA, protein and transient outward current throughout the canine ventricle. J Physiol 548(Pt 3):815–822

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Calloe K, Soltysinska E, Jespersen T, Lundby A, Antzelevitch C, Olesen SP, Cordeiro JM (2010) Differential effects of the transient outward K+ current activator NS5806 in the canine left ventricle. J Mol Cell Cardiol 48(1):191–200

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Kuo HC, Cheng CF, Clark RB, Lin JJ, Lin JL, Hoshijima M, Nguyen-Tran VT, Gu Y, Ikeda Y, Chu PH, Ross J, Giles WR, Chien KR (2001) A defect in the Kv channel-interacting protein 2 (KChIP2) gene leads to a complete loss of I to and confers susceptibility to ventricular tachycardia. Cell 107(6):801–813

    CAS  PubMed  Google Scholar 

  61. Foeger NC, Wang W, Mellor RL, Nerbonne JM (2013) Stabilization of Kv4 protein by the accessory K+ channel interacting protein 2 (KChIP2) subunit is required for the generation of native myocardial fast transient outward K+ currents. J Physiol 591(Pt 17):4149–4166

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Grubb S, Speerschneider T, Occhipinti D, Fiset C, Olesen SP, Thomsen MB, Calloe K (2014) Loss of K+ currents in heart failure is accentuated in KChIP2 deficient mice. J Cardiovasc Electrophysiol 25(8):896–904

    PubMed  Google Scholar 

  63. Bahring R, Dannenberg J, Peters HC, Leicher T, Pongs O, Isbrandt D (2001) Conserved Kv4 N-terminal domain critical for effects of Kv channel-interacting protein 2.2 on channel expression and gating. J Biol Chem 276(26):23888–23894

    CAS  PubMed  Google Scholar 

  64. Decher N, Uyguner O, Scherer CR, Karaman B, Yuksel-Apak M, Busch AE, Steinmeyer K, Wollnik B (2001) hKChIP2 is a functional modifier of hKv4.3 potassium channels: cloning and expression of a short hKChIP2 splice variant. Cardiovasc Res 52(2):255–264

    CAS  PubMed  Google Scholar 

  65. Patel SP, Parai R, Parai R, Campbell DL (2004) Regulation of Kv4.3 voltage-dependent gating kinetics by KChIP2 isoforms. J Physiol 557(Pt 1):19–41

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Kim LA, Furst J, Butler MH, Xu S, Grigorieff N, Goldstein SA (2004) Ito channels are octomeric complexes with four subunits of each Kv4.2 and K+ channel-interacting protein 2. J Biol Chem 279(7):5549–5554

    CAS  PubMed  Google Scholar 

  67. Callsen B, Isbrandt D, Sauter K, Hartmann LS, Pongs O, Bahring R (2005) Contribution of N- and C-terminal Kv4.2 channel domains to KChIP interaction [corrected]. J Physiol 568(Pt 2):397–412

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Liu WJ, Wang HT, Chen WW, Deng JX, Jiang Y, Liu J (2008) Co-expression of KCNE2 and KChIP2c modulates the electrophysiological properties of Kv4.2 current in COS-7 cells. Acta Pharmacol Sin 29(6):653–660

    CAS  PubMed  Google Scholar 

  69. Lundby A, Jespersen T, Schmitt N, Grunnet M, Olesen SP, Cordeiro JM, Calloe K (2010) Effect of the I to activator NS5806 on cloned K(V)4 channels depends on the accessory protein KChIP2. Br J Pharmacol 160(8):2028–2044

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Xiao L, Koopmann TT, Ordog B, Postema PG, Verkerk AO, Iyer V, Sampson KJ, Boink GJ, Mamarbachi MA, Varro A, Jordaens L, Res J, Kass RS, Wilde AA, Bezzina CR, Nattel S (2013) Unique cardiac Purkinje fiber transient outward current β-subunit composition: a potential molecular link to idiopathic ventricular fibrillation. Circ Res 112(10):1310–1322

    CAS  PubMed  Google Scholar 

  71. Decher N, Barth AS, Gonzalez T, Steinmeyer K, Sanguinetti MC (2004) Novel KChIP2 isoforms increase functional diversity of transient outward potassium currents. J Physiol 557(Pt 3):761–772

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Nadal MS, Ozaita A, Amarillo Y, Vega-Saenz DME, Ma Y, Mo W, Goldberg EM, Misumi Y, Ikehara Y, Neubert TA, Rudy B (2003) The CD26-related dipeptidyl aminopeptidase-like protein DPPX is a critical component of neuronal A-type K+ channels. Neuron 37(3):449–461

    CAS  PubMed  Google Scholar 

  73. Jerng HH, Qian Y, Pfaffinger PJ (2004) Modulation of Kv4.2 channel expression and gating by dipeptidyl peptidase 10 (DPP10). Biophys J 87(4):2380–2396

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Jerng HH, Kunjilwar K, Pfaffinger PJ (2005) Multiprotein assembly of Kv4.2, KChIP3 and DPP10 produces ternary channel complexes with ISA-like properties. J Physiol 568(Pt 3):767–788

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Ren X, Hayashi Y, Yoshimura N, Takimoto K (2005) Transmembrane interaction mediates complex formation between peptidase homologues and Kv4 channels. Mol Cell Neurosci 29(2):320–332

    CAS  PubMed  Google Scholar 

  76. Zagha E, Ozaita A, Chang SY, Nadal MS, Lin U, Saganich MJ, McCormack T, Akinsanya KO, Qi SY, Rudy B (2005) DPP10 modulates Kv4-mediated A-type potassium channels. J Biol Chem 280(19):18853–18861

    CAS  PubMed  Google Scholar 

  77. Amarillo Y, De Santiago-Castillo JA, Dougherty K, Maffie J, Kwon E, Covarrubias M, Rudy B (2008) Ternary Kv4.2 channels recapitulate voltage-dependent inactivation kinetics of A-type K+ channels in cerebellar granule neurons. J Physiol 586(8):2093–2106

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Kim J, Nadal MS, Clemens AM, Baron M, Jung SC, Misumi Y, Rudy B, Hoffman DA (2008) Kv4 accessory protein DPPX (DPP6) is a critical regulator of membrane excitability in hippocampal CA1 pyramidal neurons. J Neurophysiol 100(4):1835–1847

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Maffie J, Blenkinsop T, Rudy B (2009) A novel DPP6 isoform (DPP6-E) can account for differences between neuronal and reconstituted A-type K+ channels. Neurosci Lett 449(3):189–194

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Foeger NC, Norris AJ, Wren LM, Nerbonne JM (2012) Augmentation of Kv4.2-encoded currents by accessory dipeptidyl peptidase 6 and 10 subunits reflects selective cell surface Kv4.2 protein stabilization. J Biol Chem 287(12):9640–9650

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Nadin BM, Pfaffinger PJ (2010) Dipeptidyl peptidase-like protein 6 is required for normal electrophysiological properties of cerebellar granule cells. J Neurosci 30(25):8551–8565

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Radicke S, Cotella D, Graf EM, Ravens U, Wettwer E (2005) Expression and function of dipeptidyl-aminopeptidase-like protein 6 as a putative β-subunit of human cardiac transient outward current encoded by Kv4.3. J Physiol 565(Pt 3):751–756

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Kuryshev YA, Gudz TI, Brown AM, Wible BA (2000) KChAP as a chaperone for specific K+ channels. Am J Physiol Cell Physiol 278(5):C931–C941

    CAS  PubMed  Google Scholar 

  84. Kuryshev YA, Wible BA, Gudz TI, Ramirez AN, Brown AM (2001) KChAP/Kvβ1.2 interactions and their effects on cardiac Kv channel expression. Am J Physiol Cell Physiol 281(1):C290–C299

    CAS  PubMed  Google Scholar 

  85. Zhang M, Jiang M, Tseng GN (2001) minK-related peptide 1 associates with Kv4.2 and modulates its gating function: potential role as β subunit of cardiac transient outward channel? Circ Res 88(10):1012–1019

    CAS  PubMed  Google Scholar 

  86. Lundby A, Olesen SP (2006) KCNE3 is an inhibitory subunit of the Kv4.3 potassium channel. Biochem Biophys Res Commun 346(3):958–967

    CAS  PubMed  Google Scholar 

  87. Radicke S, Cotella D, Graf EM, Banse U, Jost N, Varro A, Tseng GN, Ravens U, Wettwer E (2006) Functional modulation of the transient outward current I to by KCNE β-subunits and regional distribution in human non-failing and failing hearts. Cardiovasc Res 71(4):695–703

    CAS  PubMed  Google Scholar 

  88. Delpon E, Cordeiro JM, Nunez L, Thomsen PE, Guerchicoff A, Pollevick GD, Wu Y, Kanters JK, Larsen CT, Hofman-Bang J, Burashnikov E, Christiansen M, Antzelevitch C (2008) Functional effects of KCNE3 mutation and its role in the development of Brugada syndrome. Circ Arrhythm Electrophysiol 1(3):209–218

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Nakamura TY, Pountney DJ, Ozaita A, Nandi S, Ueda S, Rudy B, Coetzee WA (2001) A role for frequenin, a Ca2+-binding protein, as a regulator of Kv4 K+-currents. Proc Natl Acad Sci USA 98(22):12808–12813

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Guo W, Malin SA, Johns DC, Jeromin A, Nerbonne JM (2002) Modulation of Kv4-encoded K+ currents in the mammalian myocardium by neuronal calcium sensor-1. J Biol Chem 277(29):26436–26443

    CAS  PubMed  Google Scholar 

  91. Shimoni Y, Ewart HS, Severson D (1999) Insulin stimulation of rat ventricular K+ currents depends on the integrity of the cytoskeleton. J Physiol 514(Pt 3):735–745

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Petrecca K, Miller DM, Shrier A (2000) Localization and enhanced current density of the Kv4.2 potassium channel by interaction with the actin-binding protein filamin. J Neurosci 20(23):8736–8744

    CAS  PubMed  Google Scholar 

  93. Cukovic D, Lu GW, Wible B, Steele DF, Fedida D (2001) A discrete amino terminal domain of Kv1.5 and Kv1.4 potassium channels interacts with the spectrin repeats of α-actinin-2. FEBS Lett 498(1):87–92

    CAS  PubMed  Google Scholar 

  94. Yang X, Salas PJ, Pham TV, Wasserlauf BJ, Smets MJ, Myerburg RJ, Gelband H, Hoffman BF, Bassett AL (2002) Cytoskeletal actin microfilaments and the transient outward potassium current in hypertrophied rat ventriculocytes. J Physiol 541(Pt 2):411–421

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Wang Z, Eldstrom JR, Jantzi J, Moore ED, Fedida D (2004) Increased focal Kv4.2 channel expression at the plasma membrane is the result of actin depolymerization. Am J Physiol Heart Circ Physiol 286(2):H749–H759

    CAS  PubMed  Google Scholar 

  96. Yamakawa T, Saith S, Li Y, Gao X, Gaisano HY, Tsushima RG (2007) Interaction of syntaxin 1A with the N-terminus of Kv4.2 modulates channel surface expression and gating. Biochemistry 46(38):10942–10949

    CAS  PubMed  Google Scholar 

  97. El-Haou S, Balse E, Neyroud N, Dilanian G, Gavillet B, Abriel H, Coulombe A, Jeromin A, Hatem SN (2009) Kv4 potassium channels form a tripartite complex with the anchoring protein SAP97 and CaMKII in cardiac myocytes. Circ Res 104(6):758–769

    CAS  PubMed  Google Scholar 

  98. Varro A, Lathrop DA, Hester SB, Nanasi PP, Papp JG (1993) Ionic currents and action potentials in rabbit, rat, and guinea pig ventricular myocytes. Basic Res Cardiol 88(2):93–102

    CAS  PubMed  Google Scholar 

  99. Yuill KH, Hancox JC (2002) Characteristics of single cells isolated from the atrioventricular node of the adult guinea-pig heart. Pflugers Arch 445(3):311–320

    CAS  PubMed  Google Scholar 

  100. Zicha S, Moss I, Allen B, Varro A, Papp J, Dumaine R, Antzelevich C, Nattel S (2003) Molecular basis of species-specific expression of repolarizing K+ currents in the heart. Am J Physiol Heart Circ Physiol 285(4):H1641–H1649

    CAS  PubMed  Google Scholar 

  101. Li GR, Du XL, Siow YL, Karmin O, Tse HF, Lau CP (2003) Calcium-activated transient outward chloride current and phase 1 repolarization of swine ventricular action potential. Cardiovasc Res 58(1):89–98

    CAS  PubMed  Google Scholar 

  102. Li GR, Sun H, To J, Tse HF, Lau CP (2004) Demonstration of calcium-activated transient outward chloride current and delayed rectifier potassium currents in Swine atrial myocytes. J Mol Cell Cardiol 36(4):495–504

    CAS  PubMed  Google Scholar 

  103. Guo W, Li H, Aimond F, Johns DC, Rhodes KJ, Trimmer JS, Nerbonne JM (2002) Role of heteromultimers in the generation of myocardial transient outward K+ currents. Circ Res 90(5):586–593

    CAS  PubMed  Google Scholar 

  104. Guo W, Xu H, London B, Nerbonne JM (1999) Molecular basis of transient outward K+ current diversity in mouse ventricular myocytes. J Physiol 521(Pt 3):587–599

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Xu H, Guo W, Nerbonne JM (1999) Four kinetically distinct depolarization-activated K+ currents in adult mouse ventricular myocytes. J Gen Physiol 113(5):661–678

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Xu H, Li H, Nerbonne JM (1999) Elimination of the transient outward current and action potential prolongation in mouse atrial myocytes expressing a dominant negative Kv4 α subunit. J Physiol 519(Pt 1):11–21

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Guo W, Li H, London B, Nerbonne JM (2000) Functional consequences of elimination of I to,f and I to,s: early afterdepolarizations, atrioventricular block, and ventricular arrhythmias in mice lacking Kv1.4 and expressing a dominant-negative Kv4 α subunit. Circ Res 87(1):73–79

    CAS  PubMed  Google Scholar 

  108. Brunet S, Aimond F, Li H, Guo W, Eldstrom J, Fedida D, Yamada KA, Nerbonne JM (2004) Heterogeneous expression of repolarizing, voltage-gated K+ currents in adult mouse ventricles. J Physiol 559(Pt 1):103–120

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Costantini DL, Arruda EP, Agarwal P, Kim KH, Zhu Y, Zhu W, Lebel M, Cheng CW, Park CY, Pierce SA, Guerchicoff A, Pollevick GD, Chan TY, Kabir MG, Cheng SH, Husain M, Antzelevitch C, Srivastava D, Gross GJ, Hui CC, Backx PH, Bruneau BG (2005) The homeodomain transcription factor Irx5 establishes the mouse cardiac ventricular repolarization gradient. Cell 123(2):347–358

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Marionneau C, Couette B, Liu J, Li H, Mangoni ME, Nargeot J, Lei M, Escande D, Demolombe S (2005) Specific pattern of ionic channel gene expression associated with pacemaker activity in the mouse heart. J Physiol 562(Pt 1):223–234

    PubMed Central  CAS  PubMed  Google Scholar 

  111. Rossow CF, Dilly KW, Santana LF (2006) Differential calcineurin/NFATc3 activity contributes to the I to transmural gradient in the mouse heart. Circ Res 98(10):1306–1313

    CAS  PubMed  Google Scholar 

  112. Teutsch C, Kondo RP, Dederko DA, Chrast J, Chien KR, Giles WR (2007) Spatial distributions of Kv4 channels and KChip2 isoforms in the murine heart based on laser capture microdissection. Cardiovasc Res 73(4):739–749

    CAS  PubMed  Google Scholar 

  113. Marionneau C, Brunet S, Flagg TP, Pilgram TK, Demolombe S, Nerbonne JM (2008) Distinct cellular and molecular mechanisms underlie functional remodeling of repolarizing K+ currents with left ventricular hypertrophy. Circ Res 102(11):1406–1415

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Boyle WA, Nerbonne JM (1991) A novel type of depolarization-activated K+ current in isolated adult rat atrial myocytes. Am J Physiol 260(4 Pt 2):H1236–H1247

    CAS  PubMed  Google Scholar 

  115. Boyle WA, Nerbonne JM (1992) Two functionally distinct 4-aminopyridine-sensitive outward K+ currents in rat atrial myocytes. J Gen Physiol 100(6):1041–1067

    CAS  PubMed  Google Scholar 

  116. Clark RB, Bouchard RA, Salinas-Stefanon E, Sanchez-Chapula J, Giles WR (1993) Heterogeneity of action potential waveforms and potassium currents in rat ventricle. Cardiovasc Res 27(10):1795–1799

    CAS  PubMed  Google Scholar 

  117. Dixon JE, McKinnon D (1994) Quantitative analysis of potassium channel mRNA expression in atrial and ventricular muscle of rats. Circ Res 75(2):252–260

    CAS  PubMed  Google Scholar 

  118. Barry DM, Trimmer JS, Merlie JP, Nerbonne JM (1995) Differential expression of voltage-gated K+ channel subunits in adult rat heart. Relation to functional K+ channels? Circ Res 77(2):361–369

    CAS  PubMed  Google Scholar 

  119. Shimoni Y, Severson D, Giles W (1995) Thyroid status and diabetes modulate regional differences in potassium currents in rat ventricle. J Physiol 488(Pt 3):673–688

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Dixon JE, Shi W, Wang HS, McDonald C, Yu H, Wymore RS, Cohen IS, McKinnon D (1996) Role of the Kv4.3 K+ channel in ventricular muscle. A molecular correlate for the transient outward current. Circ Res 79(4):659–668

    CAS  PubMed  Google Scholar 

  121. Serodio P, Vega-Saenz DME, Rudy B (1996) Cloning of a novel component of A-type K+ channels operating at subthreshold potentials with unique expression in heart and brain. J Neurophysiol 75(5):2174–2179

    CAS  PubMed  Google Scholar 

  122. Fiset C, Clark RB, Shimoni Y, Giles WR (1997) Shal-type channels contribute to the Ca2+-independent transient outward K+ current in rat ventricle. J Physiol 500(Pt 1):51–64

    PubMed Central  CAS  PubMed  Google Scholar 

  123. Casis O, Iriarte M, Gallego M, Sanchez-Chapula JA (1998) Differences in regional distribution of K+ current densities in rat ventricle. Life Sci 63(5):391–400

    CAS  PubMed  Google Scholar 

  124. Bou-Abboud E, Nerbonne JM (1999) Molecular correlates of the calcium-independent, depolarization-activated K+ currents in rat atrial myocytes. J Physiol 517(Pt 2):407–420

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Bryant SM, Shipsey SJ, Hart G (1999) Normal regional distribution of membrane current density in rat left ventricle is altered in catecholamine-induced hypertrophy. Cardiovasc Res 42(2):391–401

    CAS  PubMed  Google Scholar 

  126. Wickenden AD, Jegla TJ, Kaprielian R, Backx PH (1999) Regional contributions of Kv1.4, Kv4.2, and Kv4.3 to transient outward K+ current in rat ventricle. Am J Physiol 276(5 Pt 2):H1599–H1607

    CAS  PubMed  Google Scholar 

  127. Volk T, Nguyen TH, Schultz JH, Faulhaber J, Ehmke H (2001) Regional alterations of repolarizing K+ currents among the left ventricular free wall of rats with ascending aortic stenosis. J Physiol 530(Pt 3):443–455

    PubMed Central  CAS  PubMed  Google Scholar 

  128. Wagner M, Goltz D, Stucke C, Schwoerer AP, Ehmke H, Volk T (2007) Modulation of the transient outward K+ current by inhibition of endothelin-A receptors in normal and hypertrophied rat hearts. Pflugers Arch 454(4):595–604

    CAS  PubMed  Google Scholar 

  129. Brahmajothi MV, Morales MJ, Liu S, Rasmusson RL, Campbell DL, Strauss HC (1996) In situ hybridization reveals extensive diversity of K+ channel mRNA in isolated ferret cardiac myocytes. Circ Res 78(6):1083–1089

    CAS  PubMed  Google Scholar 

  130. Brahmajothi MV, Campbell DL, Rasmusson RL, Morales MJ, Trimmer JS, Nerbonne JM, Strauss HC (1999) Distinct transient outward potassium current (I to) phenotypes and distribution of fast-inactivating potassium channel α subunits in ferret left ventricular myocytes. J Gen Physiol 113(4):581–600

    PubMed Central  CAS  PubMed  Google Scholar 

  131. Nakayama T, Kurachi Y, Noma A, Irisawa H (1984) Action potential and membrane currents of single pacemaker cells of the rabbit heart. Pflugers Arch 402(3):248–257

    CAS  PubMed  Google Scholar 

  132. Nakayama T, Irisawa H (1985) Transient outward current carried by potassium and sodium in quiescent atrioventricular node cells of rabbits. Circ Res 57(1):65–73

    CAS  PubMed  Google Scholar 

  133. Giles WR, Imaizumi Y (1988) Comparison of potassium currents in rabbit atrial and ventricular cells. J Physiol 405:123–145

    PubMed Central  CAS  PubMed  Google Scholar 

  134. Honjo H, Lei M, Boyett MR, Kodama I (1999) Heterogeneity of 4-aminopyridine-sensitive current in rabbit sinoatrial node cells. Am J Physiol 276(4 Pt 2):H1295–H1304

    CAS  PubMed  Google Scholar 

  135. Mitcheson JS, Hancox JC (1999) Characteristics of a transient outward current (sensitive to 4-aminopyridine) in Ca2+-tolerant myocytes isolated from the rabbit atrioventricular node. Pflugers Arch 438(1):68–78

    CAS  PubMed  Google Scholar 

  136. Uese K, Hagiwara N, Miyawaki T, Kasanuki H (1999) Properties of the transient outward current in rabbit sino-atrial node cells. J Mol Cell Cardiol 31(11):1975–1984

    CAS  PubMed  Google Scholar 

  137. Wang Z, Feng J, Shi H, Pond A, Nerbonne JM, Nattel S (1999) Potential molecular basis of different physiological properties of the transient outward K+ current in rabbit and human atrial myocytes. Circ Res 84(5):551–561

    CAS  PubMed  Google Scholar 

  138. Lei M, Honjo H, Kodama I, Boyett MR (2000) Characterisation of the transient outward K+ current in rabbit sinoatrial node cells. Cardiovasc Res 46(3):433–441

    CAS  PubMed  Google Scholar 

  139. Furukawa T, Myerburg RJ, Furukawa N, Bassett AL, Kimura S (1990) Differences in transient outward currents of feline endocardial and epicardial myocytes. Circ Res 67(5):1287–1291

    CAS  PubMed  Google Scholar 

  140. Furukawa T, Kimura S, Furukawa N, Bassett AL, Myerburg RJ (1992) Potassium rectifier currents differ in myocytes of endocardial and epicardial origin. Circ Res 70(1):91–103

    CAS  PubMed  Google Scholar 

  141. Litovsky SH, Antzelevitch C (1988) Transient outward current prominent in canine ventricular epicardium but not endocardium. Circ Res 62(1):116–126

    CAS  PubMed  Google Scholar 

  142. Liu DW, Gintant GA, Antzelevitch C (1993) Ionic bases for electrophysiological distinctions among epicardial, midmyocardial, and endocardial myocytes from the free wall of the canine left ventricle. Circ Res 72(3):671–687

    CAS  PubMed  Google Scholar 

  143. Di Diego JM, Sun ZQ, Antzelevitch C (1996) I(to) and action potential notch are smaller in left vs. right canine ventricular epicardium. Am J Physiol 271(2 Pt 2):H548–H561

    PubMed  Google Scholar 

  144. Feng J, Yue L, Wang Z, Nattel S (1998) Ionic mechanisms of regional action potential heterogeneity in the canine right atrium. Circ Res 83(5):541–551

    CAS  PubMed  Google Scholar 

  145. Volders PG, Sipido KR, Carmeliet E, Spatjens RL, Wellens HJ, Vos MA (1999) Repolarizing K+ currents ITO1 and IKs are larger in right than left canine ventricular midmyocardium. Circulation 99(2):206–210

    CAS  PubMed  Google Scholar 

  146. Li GR, Lau CP, Ducharme A, Tardif JC, Nattel S (2002) Transmural action potential and ionic current remodeling in ventricles of failing canine hearts. Am J Physiol Heart Circ Physiol 283(3):H1031–H1041

    CAS  PubMed  Google Scholar 

  147. Zicha S, Xiao L, Stafford S, Cha TJ, Han W, Varro A, Nattel S (2004) Transmural expression of transient outward potassium current subunits in normal and failing canine and human hearts. J Physiol 561(Pt 3):735–748

    PubMed Central  CAS  PubMed  Google Scholar 

  148. Varro A, Nanasi PP, Lathrop DA (1993) Potassium currents in isolated human atrial and ventricular cardiocytes. Acta Physiol Scand 149(2):133–142

    CAS  PubMed  Google Scholar 

  149. Wettwer E, Amos GJ, Posival H, Ravens U (1994) Transient outward current in human ventricular myocytes of subepicardial and subendocardial origin. Circ Res 75(3):473–482

    CAS  PubMed  Google Scholar 

  150. Konarzewska H, Peeters GA, Sanguinetti MC (1995) Repolarizing K+ currents in nonfailing human hearts. Similarities between right septal subendocardial and left subepicardial ventricular myocytes. Circulation 92(5):1179–1187

    CAS  PubMed  Google Scholar 

  151. Nabauer M, Beuckelmann DJ, Uberfuhr P, Steinbeck G (1996) Regional differences in current density and rate-dependent properties of the transient outward current in subepicardial and subendocardial myocytes of human left ventricle. Circulation 93(1):168–177

    CAS  PubMed  Google Scholar 

  152. Bertaso F, Sharpe CC, Hendry BM, James AF (2002) Expression of voltage-gated K+ channels in human atrium. Basic Res Cardiol 97(6):424–433

    CAS  PubMed  Google Scholar 

  153. Gaborit N, Le Bouter S, Szuts V, Varro A, Escande D, Nattel S, Demolombe S (2007) Regional and tissue specific transcript signatures of ion channel genes in the non-diseased human heart. J Physiol 582(Pt 2):675–693

    PubMed Central  CAS  PubMed  Google Scholar 

  154. Kobayashi T, Yamada Y, Nagashima M, Seki S, Tsutsuura M, Ito Y, Sakuma I, Hamada H, Abe T, Tohse N (2003) Contribution of KChIP2 to the developmental increase in transient outward current of rat cardiomyocytes. J Mol Cell Cardiol 35(9):1073–1082

    CAS  PubMed  Google Scholar 

  155. Kilborn MJ, Fedida D (1990) A study of the developmental changes in outward currents of rat ventricular myocytes. J Physiol 430:37–60

    PubMed Central  CAS  PubMed  Google Scholar 

  156. Chouabe C, Ricci E, Amsellem J, Blaineau S, Dalmaz Y, Favier R, Pequignot JM, Bonvallet R (2004) Effects of aging on the cardiac remodeling induced by chronic high-altitude hypoxia in rat. Am J Physiol Heart Circ Physiol 287(3):H1246–H1253

    CAS  PubMed  Google Scholar 

  157. Walker KE, Lakatta EG, Houser SR (1993) Age associated changes in membrane currents in rat ventricular myocytes. Cardiovasc Res 27(11):1968–1977

    CAS  PubMed  Google Scholar 

  158. Liu SJ, Wyeth RP, Melchert RB, Kennedy RH (2000) Aging-associated changes in whole cell K+ and L-type Ca2+ currents in rat ventricular myocytes. Am J Physiol Heart Circ Physiol 279(3):H889–H900

    CAS  PubMed  Google Scholar 

  159. Bers DM (2002) Cardiac excitation–contraction coupling. Nature 415(6868):198–205

    CAS  PubMed  Google Scholar 

  160. Beuckelmann DJ, Nabauer M, Erdmann E (1993) Alterations of K+ currents in isolated human ventricular myocytes from patients with terminal heart failure. Circ Res 73(2):379–385

    CAS  PubMed  Google Scholar 

  161. Kaab S, Nuss HB, Chiamvimonvat N, O’Rourke B, Pak PH, Kass DA, Marban E, Tomaselli GF (1996) Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing-induced heart failure. Circ Res 78(2):262–273

    CAS  PubMed  Google Scholar 

  162. Kaab S, Dixon J, Duc J, Ashen D, Nabauer M, Beuckelmann DJ, Steinbeck G, McKinnon D, Tomaselli GF (1998) Molecular basis of transient outward potassium current downregulation in human heart failure: a decrease in Kv4.3 mRNA correlates with a reduction in current density. Circulation 98(14):1383–1393

    CAS  PubMed  Google Scholar 

  163. Tsuji Y, Opthof T, Kamiya K, Yasui K, Liu W, Lu Z, Kodama I (2000) Pacing-induced heart failure causes a reduction of delayed rectifier potassium currents along with decreases in calcium and transient outward currents in rabbit ventricle. Cardiovasc Res 48(2):300–309

    CAS  PubMed  Google Scholar 

  164. Li GR, Lau CP, Leung TK, Nattel S (2004) Ionic current abnormalities associated with prolonged action potentials in cardiomyocytes from diseased human right ventricles. Heart Rhythm 1(4):460–468

    PubMed  Google Scholar 

  165. Sah R, Oudit GY, Nguyen TT, Lim HW, Wickenden AD, Wilson GJ, Molkentin JD, Backx PH (2002) Inhibition of calcineurin and sarcolemmal Ca2+ influx protects cardiac morphology and ventricular function in K(v)4.2 N transgenic mice. Circulation 105(15):1850–1856

    CAS  PubMed  Google Scholar 

  166. Kassiri Z, Zobel C, Nguyen TT, Molkentin JD, Backx PH (2002) Reduction of I to causes hypertrophy in neonatal rat ventricular myocytes. Circ Res 90(5):578–585

    CAS  PubMed  Google Scholar 

  167. Wickenden AD, Lee P, Sah R, Huang Q, Fishman GI, Backx PH (1999) Targeted expression of a dominant-negative K(v)4.2 K+ channel subunit in the mouse heart. Circ Res 85(11):1067–1076

    CAS  PubMed  Google Scholar 

  168. Sah R, Ramirez RJ, Backx PH (2002) Modulation of Ca2+ release in cardiac myocytes by changes in repolarization rate: role of phase-1 action potential repolarization in excitation–contraction coupling. Circ Res 90(2):165–173

    CAS  PubMed  Google Scholar 

  169. Anderson ME, Brown JH, Bers DM (2011) CaMKII in myocardial hypertrophy and heart failure. J Mol Cell Cardiol 51(4):468–473

    PubMed Central  CAS  PubMed  Google Scholar 

  170. Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93(2):215–228

    CAS  PubMed  Google Scholar 

  171. Keskanokwong T, Lim HJ, Zhang P, Cheng J, Xu L, Lai D, Wang Y (2011) Dynamic Kv4.3–CaMKII unit in heart: an intrinsic negative regulator for CaMKII activation. Eur Heart J 32(3):305–315

    PubMed Central  CAS  PubMed  Google Scholar 

  172. Grueter CE, Colbran RJ, Anderson ME (2007) CaMKII, an emerging molecular driver for calcium homeostasis, arrhythmias, and cardiac dysfunction. J Mol Med (Berl) 85(1):5–14

    CAS  Google Scholar 

  173. Mattiazzi A, Kranias EG (2014) The role of CaMKII regulation of phospholamban activity in heart disease. Front Pharmacol 5:5

    PubMed Central  PubMed  Google Scholar 

  174. Ramirez MT, Zhao XL, Schulman H, Brown JH (1997) The nuclear δB isoform of Ca2+/calmodulin-dependent protein kinase II regulates atrial natriuretic factor gene expression in ventricular myocytes. J Biol Chem 272(49):31203–31208

    CAS  PubMed  Google Scholar 

  175. Zhang T, Johnson EN, Gu Y, Morissette MR, Sah VP, Gigena MS, Belke DD, Dillmann WH, Rogers TB, Schulman H, Ross J Jr, Brown JH (2002) The cardiac-specific nuclear δ(B) isoform of Ca2+/calmodulin-dependent protein kinase II induces hypertrophy and dilated cardiomyopathy associated with increased protein phosphatase 2A activity. J Biol Chem 277(2):1261–1267

    CAS  PubMed  Google Scholar 

  176. Ronkainen JJ, Vuolteenaho O, Tavi P (2007) Calcium-calmodulin kinase II is the common factor in calcium-dependent cardiac expression and secretion of A- and B-type natriuretic peptides. Endocrinology 148(6):2815–2820

    CAS  PubMed  Google Scholar 

  177. Backs J, Song K, Bezprozvannaya S, Chang S, Olson EN (2006) CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. J Clin Invest 116(7):1853–1864

    PubMed Central  CAS  PubMed  Google Scholar 

  178. Little GH, Bai Y, Williams T, Poizat C (2007) Nuclear calcium/calmodulin-dependent protein kinase IIδ preferentially transmits signals to histone deacetylase 4 in cardiac cells. J Biol Chem 282(10):7219–7231

    CAS  PubMed  Google Scholar 

  179. Zhang T, Kohlhaas M, Backs J, Mishra S, Phillips W, Dybkova N, Chang S, Ling H, Bers DM, Maier LS, Olson EN, Brown JH (2007) CaMKIIδ isoforms differentially affect calcium handling but similarly regulate HDAC/MEF2 transcriptional responses. J Biol Chem 282(48):35078–35087

    CAS  PubMed  Google Scholar 

  180. Zhang T, Maier LS, Dalton ND, Miyamoto S, Ross J Jr, Bers DM, Brown JH (2003) The δC isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure. Circ Res 92(8):912–919

    CAS  PubMed  Google Scholar 

  181. Hardingham GE, Arnold FJ, Bading H (2001) Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity. Nat Neurosci 4(3):261–267

    CAS  PubMed  Google Scholar 

  182. Wu X, Zhang T, Bossuyt J, Li X, McKinsey TA, Dedman JR, Olson EN, Chen J, Brown JH, Bers DM (2006) Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation–transcription coupling. J Clin Invest 116(3):675–682

    PubMed Central  CAS  PubMed  Google Scholar 

  183. Bootman MD, Fearnley C, Smyrnias I, MacDonald F, Roderick HL (2009) An update on nuclear calcium signalling. J Cell Sci 122(Pt 14):2337–2350

    CAS  PubMed  Google Scholar 

  184. Wagner S, Hacker E, Grandi E, Weber SL, Dybkova N, Sossalla S, Sowa T, Fabritz L, Kirchhof P, Bers DM, Maier LS (2009) Ca/calmodulin kinase II differentially modulates potassium currents. Circ Arrhythm Electrophysiol 2(3):285–294

    PubMed Central  CAS  PubMed  Google Scholar 

  185. Roeper J, Lorra C, Pongs O (1997) Frequency-dependent inactivation of mammalian A-type K+ channel KV1.4 regulated by Ca2+/calmodulin-dependent protein kinase. J Neurosci 17(10):3379–3391

    CAS  PubMed  Google Scholar 

  186. Sergeant GP, Ohya S, Reihill JA, Perrino BA, Amberg GC, Imaizumi Y, Horowitz B, Sanders KM, Koh SD (2005) Regulation of Kv4.3 currents by Ca2+/calmodulin-dependent protein kinase II. Am J Physiol Cell Physiol 288(2):C304–C313

    CAS  PubMed  Google Scholar 

  187. Varga AW, Yuan LL, Anderson AE, Schrader LA, Wu GY, Gatchel JR, Johnston D, Sweatt JD (2004) Calcium-calmodulin-dependent kinase II modulates Kv4.2 channel expression and upregulates neuronal A-type potassium currents. J Neurosci 24(14):3643–3654

    CAS  PubMed  Google Scholar 

  188. Colinas O, Gallego M, Setien R, Lopez-Lopez JR, Perez-Garcia MT, Casis O (2006) Differential modulation of Kv4.2 and Kv4.3 channels by calmodulin-dependent protein kinase II in rat cardiac myocytes. Am J Physiol Heart Circ Physiol 291(4):H1978–H1987

    CAS  PubMed  Google Scholar 

  189. Li J, Marionneau C, Zhang R, Shah V, Hell JW, Nerbonne JM, Anderson ME (2006) Calmodulin kinase II inhibition shortens action potential duration by upregulation of K+ currents. Circ Res 99(10):1092–1099

    CAS  PubMed  Google Scholar 

  190. Tessier S, Karczewski P, Krause EG, Pansard Y, Acar C, Lang-Lazdunski M, Mercadier JJ, Hatem SN (1999) Regulation of the transient outward K+ current by Ca2+/calmodulin-dependent protein kinases II in human atrial myocytes. Circ Res 85(9):810–819

    CAS  PubMed  Google Scholar 

  191. Xiao L, Coutu P, Villeneuve LR, Tadevosyan A, Maguy A, Le Bouter S, Allen BG, Nattel S (2008) Mechanisms underlying rate-dependent remodeling of transient outward potassium current in canine ventricular myocytes. Circ Res 103(7):733–742

    CAS  PubMed  Google Scholar 

  192. Zobel C, Kassiri Z, Nguyen TT, Meng Y, Backx PH (2002) Prevention of hypertrophy by overexpression of Kv4.2 in cultured neonatal cardiomyocytes. Circulation 106(18):2385–2391

    CAS  PubMed  Google Scholar 

  193. Lebeche D, Kaprielian R, Hajjar R (2006) Modulation of action potential duration on myocyte hypertrophic pathways. J Mol Cell Cardiol 40(5):725–735

    CAS  PubMed  Google Scholar 

  194. Lebeche D, Kaprielian R, Del MF, Tomaselli G, Gwathmey JK, Schwartz A, Hajjar RJ (2004) In vivo cardiac gene transfer of Kv4.3 abrogates the hypertrophic response in rats after aortic stenosis. Circulation 110(22):3435–3443

    CAS  PubMed  Google Scholar 

  195. Molkentin JD (2004) Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovasc Res 63(3):467–475

    CAS  PubMed  Google Scholar 

  196. Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7(8):589–600

    CAS  PubMed  Google Scholar 

  197. Hallhuber M, Burkard N, Wu R, Buch MH, Engelhardt S, Hein L, Neyses L, Schuh K, Ritter O (2006) Inhibition of nuclear import of calcineurin prevents myocardial hypertrophy. Circ Res 99(6):626–635

    CAS  PubMed  Google Scholar 

  198. Chow CW, Rincon M, Cavanagh J, Dickens M, Davis RJ (1997) Nuclear accumulation of NFAT4 opposed by the JNK signal transduction pathway. Science 278(5343):1638–1641

    CAS  PubMed  Google Scholar 

  199. Zhu J, Shibasaki F, Price R, Guillemot JC, Yano T, Dotsch V, Wagner G, Ferrara P, McKeon F (1998) Intramolecular masking of nuclear import signal on NF-AT4 by casein kinase I and MEKK1. Cell 93(5):851–861

    CAS  PubMed  Google Scholar 

  200. Zhu J, McKeon F (1999) NF-AT activation requires suppression of Crm1-dependent export by calcineurin. Nature 398(6724):256–260

    CAS  PubMed  Google Scholar 

  201. Tandan S, Wang Y, Wang TT, Jiang N, Hall DD, Hell JW, Luo X, Rothermel BA, Hill JA (2009) Physical and functional interaction between calcineurin and the cardiac L-type Ca2+ channel. Circ Res 105(1):51–60

    PubMed Central  CAS  PubMed  Google Scholar 

  202. Yatani A, Honda R, Tymitz KM, Lalli MJ, Molkentin JD (2001) Enhanced Ca2+ channel currents in cardiac hypertrophy induced by activation of calcineurin-dependent pathway. J Mol Cell Cardiol 33(2):249–259

    CAS  PubMed  Google Scholar 

  203. Munch G, Bolck B, Karczewski P, Schwinger RH (2002) Evidence for calcineurin-mediated regulation of SERCA 2a activity in human myocardium. J Mol Cell Cardiol 34(3):321–334

    PubMed  Google Scholar 

  204. Dong D, Duan Y, Guo J, Roach DE, Swirp SL, Wang L, Lees-Miller JP, Sheldon RS, Molkentin JD, Duff HJ (2003) Overexpression of calcineurin in mouse causes sudden cardiac death associated with decreased density of K+ channels. Cardiovasc Res 57(2):320–332

    CAS  PubMed  Google Scholar 

  205. Petrashevskaya NN, Bodi I, Rubio M, Molkentin JD, Schwartz A (2002) Cardiac function and electrical remodeling of the calcineurin-overexpressed transgenic mouse. Cardiovasc Res 54(1):117–132

    CAS  PubMed  Google Scholar 

  206. Gong N, Bodi I, Zobel C, Schwartz A, Molkentin JD, Backx PH (2006) Calcineurin increases cardiac transient outward K+ currents via transcriptional up-regulation of Kv4.2 channel subunits. J Biol Chem 281(50):38498–38506

    CAS  PubMed  Google Scholar 

  207. Deng L, Huang B, Qin D, Ganguly K, El-Sherif N (2001) Calcineurin inhibition ameliorates structural, contractile, and electrophysiologic consequences of postinfarction remodeling. J Cardiovasc Electrophysiol 12(9):1055–1061

    CAS  PubMed  Google Scholar 

  208. Rossow CF, Minami E, Chase EG, Murry CE, Santana LF (2004) NFATc3-induced reductions in voltage-gated K+ currents after myocardial infarction. Circ Res 94(10):1340–1350

    CAS  PubMed  Google Scholar 

  209. Perrier E, Perrier R, Richard S, Benitah JP (2004) Ca2+ controls functional expression of the cardiac K+ transient outward current via the calcineurin pathway. J Biol Chem 279(39):40634–40639

    CAS  PubMed  Google Scholar 

  210. Dilly KW, Rossow CF, Votaw VS, Meabon JS, Cabarrus JL, Santana LF (2006) Mechanisms underlying variations in excitation–contraction coupling across the mouse left ventricular free wall. J Physiol 572(Pt 1):227–241

    PubMed Central  CAS  PubMed  Google Scholar 

  211. Rossow CF, Dilly KW, Yuan C, Nieves-Cintron M, Cabarrus JL, Santana LF (2009) NFATc3-dependent loss of I to gradient across the left ventricular wall during chronic β adrenergic stimulation. J Mol Cell Cardiol 46(2):249–256

    PubMed Central  CAS  PubMed  Google Scholar 

  212. Gaertner TR, Kolodziej SJ, Wang D, Kobayashi R, Koomen JM, Stoops JK, Waxham MN (2004) Comparative analyses of the three-dimensional structures and enzymatic properties of α, β, γ and δ isoforms of Ca2+-calmodulin-dependent protein kinase II. J Biol Chem 279(13):12484–12494

    CAS  PubMed  Google Scholar 

  213. Quintana AR, Wang D, Forbes JE, Waxham MN (2005) Kinetics of calmodulin binding to calcineurin. Biochem Biophys Res Commun 334(2):674–680

    CAS  PubMed  Google Scholar 

  214. Khoo MS, Li J, Singh MV, Yang Y, Kannankeril P, Wu Y, Grueter CE, Guan X, Oddis CV, Zhang R, Mendes L, Ni G, Madu EC, Yang J, Bass M, Gomez RJ, Wadzinski BE, Olson EN, Colbran RJ, Anderson ME (2006) Death, cardiac dysfunction, and arrhythmias are increased by calmodulin kinase II in calcineurin cardiomyopathy. Circulation 114(13):1352–1359

    CAS  PubMed  Google Scholar 

  215. Kubokawa M, Kojo T, Komagiri Y, Nakamura K (2009) Role of calcineurin-mediated dephosphorylation in modulation of an inwardly rectifying K+ channel in human proximal tubule cells. J Membr Biol 231(2–3):79–92

    CAS  PubMed  Google Scholar 

  216. Ahn SM, Choe ES (2010) Alterations in GluR2 AMPA receptor phosphorylation at serine 880 following group I metabotropic glutamate receptor stimulation in the rat dorsal striatum. J Neurosci Res 88(5):992–999

    CAS  PubMed  Google Scholar 

  217. Hashimoto Y, King MM, Soderling TR (1988) Regulatory interactions of calmodulin-binding proteins: phosphorylation of calcineurin by autophosphorylated Ca2+/calmodulin-dependent protein kinase II. Proc Natl Acad Sci USA 85(18):7001–7005

    PubMed Central  CAS  PubMed  Google Scholar 

  218. Martensen TM, Martin BM, Kincaid RL (1989) Identification of the site on calcineurin phosphorylated by Ca2+/CaM-dependent kinase II: modification of the CaM-binding domain. Biochemistry 28(24):9243–9247

    CAS  PubMed  Google Scholar 

  219. MacDonnell SM, Weisser-Thomas J, Kubo H, Hanscome M, Liu Q, Jaleel N, Berretta R, Chen X, Brown JH, Sabri AK, Molkentin JD, Houser SR (2009) CaMKII negatively regulates calcineurin-NFAT signaling in cardiac myocytes. Circ Res 105(4):316–325

    PubMed Central  CAS  PubMed  Google Scholar 

  220. Lu YM, Shioda N, Yamamoto Y, Han F, Fukunaga K (2010) Transcriptional upregulation of calcineurin Aβ by endothelin-1 is partially mediated by calcium/calmodulin-dependent protein kinase IIδ3 in rat cardiomyocytes. Biochim Biophys Acta 1799(5–6):429–441

    CAS  PubMed  Google Scholar 

  221. Backs J, Backs T, Neef S, Kreusser MM, Lehmann LH, Patrick DM, Grueter CE, Qi X, Richardson JA, Hill JA, Katus HA, Bassel-Duby R, Maier LS, Olson EN (2009) The δ isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proc Natl Acad Sci USA 106(7):2342–2347

    PubMed Central  CAS  PubMed  Google Scholar 

  222. Ling H, Zhang T, Pereira L, Means CK, Cheng H, Gu Y, Dalton ND, Peterson KL, Chen J, Bers D, Brown JH (2009) Requirement for Ca2+/calmodulin-dependent kinase II in the transition from pressure overload-induced cardiac hypertrophy to heart failure in mice. J Clin Invest 119(5):1230–1240

    PubMed Central  CAS  PubMed  Google Scholar 

  223. Ai X, Curran JW, Shannon TR, Bers DM, Pogwizd SM (2005) Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circ Res 97(12):1314–1322

    CAS  PubMed  Google Scholar 

  224. Fischer TH, Herting J, Tirilomis T, Renner A, Neef S, Toischer K, Ellenberger D, Forster A, Schmitto JD, Gummert J, Schondube FA, Hasenfuss G, Maier LS, Sossalla S (2013) Ca2 +/calmodulin-dependent protein kinase II and protein kinase A differentially regulate sarcoplasmic reticulum Ca2+ leak in human cardiac pathology. Circulation 128(9):970–981

    CAS  PubMed  Google Scholar 

  225. Sossalla S, Fluschnik N, Schotola H, Ort KR, Neef S, Schulte T, Wittkopper K, Renner A, Schmitto JD, Gummert J, El-Armouche A, Hasenfuss G, Maier LS (2010) Inhibition of elevated Ca2 +/calmodulin-dependent protein kinase II improves contractility in human failing myocardium. Circ Res 107(9):1150–1161

    CAS  PubMed  Google Scholar 

  226. Cheng J, Xu L, Lai D, Guilbert A, Lim HJ, Keskanokwong T, Wang Y (2012) CaMKII inhibition in heart failure, beneficial, harmful, or both. Am J Physiol Heart Circ Physiol 302(7):H1454–H1465

    PubMed Central  CAS  PubMed  Google Scholar 

  227. Guilbert A, Cheng J, Wang Y (2012) Kv4.3 expression improves cardiac function in heart failure mice. Circulation 126:A19641

    Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the National Natural Science Foundation of China to Yanggan Wang [NSFC, Grant Nos. 81270304 and 81420108004].

Conflict of interest

No conflicts of interest to disclose.

Ethical standard

The manuscript does not contain clinical studies or patient data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanggan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Q., Feng, Y. & Wang, Y. Transient outward potassium channel: a heart failure mediator. Heart Fail Rev 20, 349–362 (2015). https://doi.org/10.1007/s10741-015-9474-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-015-9474-y

Keywords

Navigation