Skip to main content

Advertisement

Log in

Glucose-induced cell signaling in the pathogenesis of diabetic cardiomyopathy

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Chronic diabetic complications affect multiple organ systems and lead to significant morbidity and mortality in the diabetic population. Diabetic cardiomyopathy is a major etiologic factor causing heart failure. Dysfunction of both vascular endothelial cells and cardiomyocytes contributes in the pathogenesis of diabetic cardiomyopathy. Hyperglycemia has been identified as the key determinant in the development of several chronic diabetic complications. Hyperglycemia leads to oxidative stress and several other abnormalities causing changes in cellular signaling. These diabetes-mediated biochemical anomalies show cross-interaction and complex interplay. Such changes also cause alteration of transcriptional and post-transcriptional machinery causing altered production of vasoactive and cardioactive factors. In this review, we will highlight some of the important signaling changes leading to diabetic cardiomyopathy and discuss possible potential therapeutic remedies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sicree R, Shaw J, Zimmet P, Tapp R (2003) The global burden of diabetes. In: Gan D (ed) Diabetes atlas, 2nd edn. International Diabetes Federation, Brussels, pp 15–71

    Google Scholar 

  2. Garcia MJ, McNamara PM, Gordon T, Kannel WB (1974) Morbidity and mortality in diabetics in the Framingham population: 16 year follow-up study. Diabetes 23:105–111

    CAS  PubMed  Google Scholar 

  3. Consensus statement (1993) Role of cardiovascular risk factors in prevention and treatment of macrovascular disease in diabetes. American Diabetes Association. Diabetes Care 16:72–78

    Google Scholar 

  4. Hayat SA, Patel B, Khattar RS, Malik RA (2004) Diabetic cardiomyopathy: mechanisms, diagnosis and treatment. Clin Sci (Lond) 10:539–557

    Google Scholar 

  5. Bell DS (1995) Diabetic cardiomyopathy A unique entity or a complication of coronary artery disease? Diabetes Care 18:708–714

    CAS  PubMed  Google Scholar 

  6. Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A (1972) New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 30:595–602

    CAS  PubMed  Google Scholar 

  7. Cosson S, Kevorkian JP (2003) Left ventricular diastolic dysfunction: an early sign of diabetic cardiomyopathy? Diabetes Metab 29:455–466

    CAS  PubMed  Google Scholar 

  8. Hamby RI, Zoneraich S, Sherman L (1974) Diabetic cardiomyopathy. JAMA 229:1749–1754

    CAS  PubMed  Google Scholar 

  9. Factor SM, Minase T, Sonnenblick EH (1980) Clinical and morphological features of human hypertensive-diabetic cardiomyopathy. Am Heart J 99:446–458

    CAS  PubMed  Google Scholar 

  10. Factor SM, Okun EM, Minase T (1980) Capillary microaneurysms in the human diabetic heart. N Engl J Med 302:384–388

    CAS  PubMed  Google Scholar 

  11. Nunoda S, Genda A, Sugihara N, Nakayama A, Mizuno S, Takeda R (1985) Quantitative approach to the histopathology of the biopsied right ventricular myocardium in patients with diabetes mellitus. Heart Vessels 1:43–47

    CAS  PubMed  Google Scholar 

  12. Sutherland CG, Fisher BM, Frier BM, Dargie HJ, More IA, Lindop GB (1989) Endomyocardial biopsy pathology in insulin-dependent diabetic patients with abnormal ventricular function. Histopathology 14:593–602

    CAS  PubMed  Google Scholar 

  13. Yarom R, Zirkin H, Stammler G, Rose AG (1992) Human coronary microvessels in diabetes and ischaemia Morphometric study of autopsy material. J Pathol 166:265–270

    CAS  PubMed  Google Scholar 

  14. Okada H, Woodcock MJ, Mitchell J, Sakamoto T, Marutsuka K, Sobel BE et al (1998) Induction of plasminogen activator inhibitor type 1 and type 1 collagen expression in rat cardiac microvascular endothelial cells by interleukin-1 and its dependence on oxygen-centered free radicals. Circulation 97:2175–2182

    CAS  PubMed  Google Scholar 

  15. Okruhlicova L, Tribulova N, Weismann P, Sotnikova R (2005) Ultrastructure and histochemistry of rat myocardial capillary endothelial cells in response to diabetes and hypertension. Cell Res 15:532–538

    PubMed  Google Scholar 

  16. Popov D, Sima A, Stern D, Simionescu M (1996) The pathomorphological alterations of endocardial endothelium in experimental diabetes and diabetes associated with hyperlipidemia. Acta Diabetol 33:41–47

    CAS  PubMed  Google Scholar 

  17. The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329:977–986

    Google Scholar 

  18. UKPDS Group (1999) Quality of life in type 2 diabetic patients is affected by complications but not by intensive policies to improve blood glucose or blood pressure control. Diabetes Care 22:1125–1136

    Google Scholar 

  19. Jugdutt BI (2003) Ventricular remodeling after infarction and the extracellular collagen matrix: when is enough? Circulation 108:1395–1403

    PubMed  Google Scholar 

  20. Weber KT (1989) Cardiac interstitium in health and disease: the fibrillar collagen network. J Am Coll Cardiol 13:1637–1652

    CAS  PubMed  Google Scholar 

  21. Mandarino LJ, Finlayson J, Hassell JR (1994) High glucose downregulates glucose transport activity in retinal capillary pericytes but not endothelial cells. Invest Ophthalmol Vis Sci 35:964–972

    CAS  PubMed  Google Scholar 

  22. Kaiser N, Sasson S, Feener EP et al (1993) Differential regulation of glucose transport and transporters by glucose in vascular endothelial and smooth muscle cells. Diabetes 42:80–89

    CAS  PubMed  Google Scholar 

  23. Lopaschuk GD (2002) Metabolic abnormalities in the diabetic heart. Heart Fail Rev 7:149–159

    CAS  PubMed  Google Scholar 

  24. Taegtmeyer H, McNulty P, Young ME (2002) Adaptation and maladaptation of the heart in diabetes, part I: general concepts. Circulation 105:1727–1733

    CAS  PubMed  Google Scholar 

  25. Stanley WC, Lopaschuk GD, McCormack JG (1997) Regulation of energy substrate metabolism in the diabetic heart. Cardiovasc Res 34:25–33

    CAS  PubMed  Google Scholar 

  26. McGavock JM, Victor RG, Unger RH et al (2006) Adiposity of the heart, revisited. Ann Intern Med 144:517–524

    CAS  PubMed  Google Scholar 

  27. Sharma S, Adrogue JV, Golfman L et al (2004) Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. FASEB J 18:1692–1700

    CAS  PubMed  Google Scholar 

  28. Endoh M (2006) Signal transduction and Ca2+ signaling in intact myocardium. J Pharmacol Sci 100:525–537

    CAS  PubMed  Google Scholar 

  29. Cesario DA, Brar R, Shivkumar K (2006) Alterations in ion channel physiology in diabetic cardiomyopathy. Endocrinol Metab Clin North Am 35:601–610

    CAS  PubMed  Google Scholar 

  30. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    CAS  PubMed  Google Scholar 

  31. Cai L, Kang YJ (2001) Oxidative stress and diabetic cardiomyopathy: a brief review. Cardiovasc Toxicol 1:181–193

    CAS  PubMed  Google Scholar 

  32. Khan ZA, Farhangkhoee H, Chakrabarti S (2006) Towards newer molecular targets for chronic diabetic complications. Curr Vasc Pharmacol 4:45–57

    CAS  PubMed  Google Scholar 

  33. King GL, Loeken MR (2004) Hyperglycemia-induced oxidative stress in diabetic complications. Histochem Cell Biol 122:333–338

    CAS  PubMed  Google Scholar 

  34. Krutzfeldt A, Spahr R, Mertens S et al (1990) Metabolism of exogenous substrates by coronary endothelial cells in culture. J Mol Cell Cardiol 22:1393–1404

    CAS  PubMed  Google Scholar 

  35. Florey L (1966) The endothelial cell. Br Med J 2:487–490

    Google Scholar 

  36. Nishikawa T, Edelstein D, Du XL, Yamagishi SI, Matsumura T, Kaneda Y et al (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787–790

    CAS  PubMed  Google Scholar 

  37. Griendling KK, FitzGerald GA (2003) Oxidative stress and cardiovascular injury I basic mechanisms and in vivo monitoring of ROS. Circulation 108:1912–1916

    PubMed  Google Scholar 

  38. van de Ree MA, Huisman MV, de Man FH, van der Vijver JC, Meinders AE, Blauw GJ (2001) Impaired endothelium-dependent vasodilation in type 2 diabetes mellitus and the lack of effect of simvastatin. Cardiovasc Res 52:299–305

    PubMed  Google Scholar 

  39. Dogra G, Rich L, Stanton K, Watts GF (2001) Endothelium-dependent and independent vasodilation studies at normoglycaemia in type I diabetes mellitus with and without microalbuminuria. Diabetologia 44:593–601

    CAS  PubMed  Google Scholar 

  40. Lambert J, Aarsen M, Donker AJ, Stehouwer CD (1996) Endothelium-dependent and -independent vasodilation of large arteries in normoalbuminuric insulin-dependent diabetes mellitus. Arterioscler Thromb Vasc Biol 16:705–711

    CAS  PubMed  Google Scholar 

  41. Johnstone MT, Creager SJ, Scales KM, Cusco JA, Lee BK, Creager MA (1993) Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation 88:2510–2516

    CAS  PubMed  Google Scholar 

  42. McVeigh GE, Brennan GM, Johnston GD, McDermott BJ, McGrath LT, Henry WR et al (1992) Impaired endothelium-dependent and independent vasodilation in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 35:771–776

    CAS  PubMed  Google Scholar 

  43. Farhangkhoee H, Khan ZA, Mukherjee S et al (2003) Heme oxygenase in diabetes-induced oxidative stress in the heart. J Mol Cell Cardiol 35:1439–1448

    CAS  PubMed  Google Scholar 

  44. Srivastava SK, Ramana KV, Chandra D, Srivastava S, Bhatnagar A (2003) Regulation of aldose reductase and the polyol pathway activity by nitric oxide. Chem Biol Interact 143–144:333–340

    PubMed  Google Scholar 

  45. Schaffer SW, Jong CJ, Mozaffari M (2012) Role of oxidative stress in diabetes-mediated vascular dysfunction: unifying hypothesis of diabetes revisited. Vascul Pharmacol 57:139–149

    CAS  PubMed  Google Scholar 

  46. Ogita H, Liao J (2004) Endothelial function and oxidative stress. Endothelium 11:123–132

    CAS  PubMed  Google Scholar 

  47. Feron O, Belhassen L, Kobzik L, Smith TW, Kelly RA, Michel T (1996) Endothelial nitric oxide synthase targeting to caveolae specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells. J Biol Chem 271:22810–22814

    CAS  PubMed  Google Scholar 

  48. Feron O, Saldana F, Michel JB, Michel T (1998) The endothelial nitric-oxide synthase-caveolin regulatory cycle. J Biol Chem 273:3125–3128

    CAS  PubMed  Google Scholar 

  49. Lisanti MP, Scherer PE, Vidugiriene J, Tang Z, Hermanowski VA, Tu YH et al (1994) Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source: implications for human disease. J Cell Biol 126:111–126

    CAS  PubMed  Google Scholar 

  50. Uittenbogaard A, Shaul PW, Yuhanna IS, Blair A, Smart EJ (2000) High density lipoprotein prevents oxidized low density lipoprotein-induced inhibition of endothelial nitric-oxide synthase localization and activation in caveolae. J Biol Chem 275:11278–11283

    CAS  PubMed  Google Scholar 

  51. Endemann G, Stanton LW, Madden KS, Bryant CM, White RT, Protter AA (1993) CD36 is a receptor for oxidized low density lipoprotein. J Biol Chem 268:11811–11816

    CAS  PubMed  Google Scholar 

  52. Farhangkhoee Y, Khan ZA, Chakrabarti S (2005) Glucose-induced upregulation of CD36 mediates oxidative stress and microvascular endothelial cell dysfunction. Diabetologia 48:1401–1410

    CAS  PubMed  Google Scholar 

  53. Ting HH, Timimi FK, Boles KS et al (1996) Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J Clin Invest 97:22–28

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Timimi FK, Ting HH, Haley EA, Roddy MA, Ganz P, Creager MA (1998) Vitamin C improves endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. J Am Coll Cardiol 31:552–557

    CAS  PubMed  Google Scholar 

  55. Marchioli R (1999) Antioxidant vitamins and prevention of cardiovascular disease: laboratory epidemiological and clinical trial data. Pharmacol Res 40:227–238

    CAS  PubMed  Google Scholar 

  56. Ain SK, McVie R, Jaramillo JJ, Palmer M, Smith T, Meachum ZD et al (1996) The effect of modest vitamin E supplementation on lipid peroxidation products and other cardiovascular risk factors in diabetic patients. Lipids 31:S87–S90

    Google Scholar 

  57. Maxwell SRJ (1999) Antioxidant vitamin supplements. Drug Saf 21:253–266

    CAS  PubMed  Google Scholar 

  58. Hammes HP, Du X, Edelstein D, Taguchi T, Matsumura T, Ju Q et al (2003) Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med 9:294–299

    CAS  PubMed  Google Scholar 

  59. Vlassara H (2001) The AGE-receptor in the pathogenesis of diabetic complications. Diabetes Metab Res Rev 17:436–443

    CAS  PubMed  Google Scholar 

  60. Wautier MP, Chappey O, Corda S, Stern DM, Schmidt AM, Wautier JL (2001) Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Physiol 280:E685–E694

    CAS  Google Scholar 

  61. John WG, Lamb EJ (1993) The Maillard or browning reaction in diabetes. Eye 7:230–237

    PubMed  Google Scholar 

  62. Raj DS, Choudhury D, Welbourne TC, Levi M (2000) Advanced glycation end products: a Nephrologist’s perspective. Am J Kidney Dis 35:365–380

    CAS  PubMed  Google Scholar 

  63. Skovsted IC, Christensen M, Breinholt J, Mortensen SB (1998) Characterisation of a novel AGE-compound derived from lysine and 3-deoxyglucosone. Cell Mol Biol 44:1159–1163

    CAS  PubMed  Google Scholar 

  64. Baynes JW, Thorpe SR (1999) Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48:1–9

    CAS  PubMed  Google Scholar 

  65. Miyata T, Kurokawa K, Van YDSC (2000) Advanced glycation and lipoxidation end products: role of reactive carbonyl compounds generated during carbohydrate and lipid metabolism. J Am Soc Nephrol 9:1744–17452

    Google Scholar 

  66. Candido R, Forbes JM, Thomas MC, Thallas V, Dean RG, Burns WC et al (2003) A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes. Circ Res 18:785–792

    Google Scholar 

  67. Brownlee M, Cerami A, Vlassara H (1988) Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med 318:1315–1321

    CAS  PubMed  Google Scholar 

  68. Airaksinen KE, Salmela PI, Linnaluoto MK, Ikaheimo MJ, Ahola K, Ryhanen LJ (1993) Diminished arterial elasticity in diabetes: association with fluorescent advanced glycosylation end products in collagen. Cardiovasc Res 27:942–945

    CAS  PubMed  Google Scholar 

  69. McCance DR, Dyer DG, Dunn JA, Bailie KE, Thorpe SR, Baynes JW et al (1993) Maillard reaction products and their relation to complications in insulin-dependent diabetes mellitus. J Clin Invest 91:2470–2478

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Dyer DG, Dunn JA, Thorpe SR, Bailie KE, Lyons TJ, McCance DR et al (1993) Accumulation of Maillard reaction products in skin collagen in diabetes and aging. J Clin Invest 91:2463–2469

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Aronson D (2003) Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. J Hypertens 21:3–12

    CAS  PubMed  Google Scholar 

  72. Norton GR, Candy G, Woodiwiss AJ (1996) Aminoguanidine prevents the decreased myocardial compliance produced by streptozotocin-induced diabetes mellitus in rats. Circulation 93:1905–1912

    CAS  PubMed  Google Scholar 

  73. Thornalley PJ (1998) Cell activation by glycated proteins. AGE receptors, receptor recognition factors and functional classification of AGEs. Cell Mol Biol (Noisy-le-grand) 44:1013–1023

    CAS  Google Scholar 

  74. Pugliese G, Pricci F, Romeo G, Pugliese F, Mene P, Giannini S et al (1997) Upregulation of mesangial growth factor and extracellular matrix synthesis by advanced glycation end products via a receptor-mediated mechanism. Diabetes 46:1881–1887

    CAS  PubMed  Google Scholar 

  75. Cooper ME (2004) Importance of advanced glycation end products in diabetes-associated cardiovascular and renal disease. Am J Hypertens 17:31S–38S

    CAS  PubMed  Google Scholar 

  76. Petrova R, Yamamoto Y, Muraki K, Yonekura H, Sakurai S, Watanabe T et al (2002) Advanced glycation end product-induced calcium handling impairment in mouse cardiac myocytes. J Mol Cell Cardiol 34:1425–1431

    CAS  PubMed  Google Scholar 

  77. Liu J, Masurekar MR, Vatner DE, Jyothirmayi GN, Regan TJ, Vatner SF et al (2003) Glycation end-product cross-link breaker reduces collagen and improves cardiac function in aging diabetic heart. Am J Physiol 285:H2587–H2591

    CAS  Google Scholar 

  78. Srivastava SK, Ansari NH, Liu S, Izban A, Das B, Szabo G et al (1989) The effect of oxidants on biomembranes and cellular metabolism. Mol Cell Biochem 19:149–157

    Google Scholar 

  79. Williamson JR, Chang K, Frangos M, Hasan KS, Ido Y, Kawamura T et al (1993) Hyperglycemic pseudohypoxia and diabetic complications. Diabetes 42:801–813

    CAS  PubMed  Google Scholar 

  80. Johnson BF, Nesto RW, Pfeifer MA, Slater WR, Vinik AI, Chyun DA et al (2004) Cardiac abnormalities in diabetic patients with neuropathy: effects of aldose reductase inhibitor administration. Diabetes Care 27:448–454

    CAS  PubMed  Google Scholar 

  81. Ramasamy R, Oates PJ, Schaefer S (1997) Aldose reductase inhibition protects diabetic and non-diabetic rat hearts from ischemic injury. Diabetes 46:292–300

    CAS  PubMed  Google Scholar 

  82. Trueblood N, Ramasamy R (1998) Aldose reductase inhibition improves altered glucose metabolism of isolated diabetic rat hearts. Am J Physiol 275:H75–H83

    CAS  PubMed  Google Scholar 

  83. Tang WH, Cheng WT, Kravtsov GM, Tong XY, Hou XY, Chung SK, Chung SS (2010) Cardiac contractile dysfunction during acute hyperglycemia due to impairment of SERCA by polyol pathway-mediated oxidative stress. Am J Physiol Cell Physiol 299:643–653

    Google Scholar 

  84. Giles TD, Ouyang J, Kerut EK, Given MB, Allen GE, McIlwain EF et al (1998) Changes in protein kinase C in early cardiomyopathy and in gracilis muscle in the BB/Wor diabetic rat. Am J Physiol 274:H295–H307

    CAS  PubMed  Google Scholar 

  85. Guo M, Wu MH, Korompai F, Yuan SY (2003) Upregulation of PKC genes and isozymes in cardiovascular tissues during early stages of experimental diabetes. Physiol Genomics 12:139–146

    CAS  PubMed  Google Scholar 

  86. Liu X, Wang J, Takeda N, Binaglia L, Panagia V, Dhalla NS (1999) Changes in cardiac protein kinase C activities and isozymes in streptozotocin-induced diabetes. Am J Physiol 277:E798–E804

    CAS  PubMed  Google Scholar 

  87. Way KJ, Katai N, King GL (2001) Protein kinase C and the development of diabetic vascular complications. Diabet Med 18:945–959

    CAS  PubMed  Google Scholar 

  88. Way KJ, Isshiki K, Suzuma K, Yokota T, Zvagelsky D, Schoen FJ et al (2002) Expression of connective tissue growth factor is increased in injured myocardium associated with protein kinase C beta2 activation and diabetes. Diabetes 51:2709–2718

    CAS  PubMed  Google Scholar 

  89. Ishii H, Jirousek MR, Koya D, Takagi C, Xia P, Clermont A et al (1996) Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science 272:728–731

    CAS  PubMed  Google Scholar 

  90. Koya D, King GL (1998) Protein kinase C activation and the development of diabetic complications. Diabetes 47:859–866

    CAS  PubMed  Google Scholar 

  91. Mellor H, Parker PJ (1998) The extended protein kinase C superfamily. Biochem J 332:281–292

    CAS  PubMed  Google Scholar 

  92. Inoguchi T, Battan R, Handler E, Sportsman JR, Heath W, King GL (1992) Preferential elevation of protein kinase C isoform beta II and diacylglycerol levels in the aorta and heart of diabetic rats: differential reversibility to glycemic control by islet cell transplantation. Proc Natl Acad Sci USA 89:11059–11063

    CAS  PubMed  Google Scholar 

  93. Pastukh V, Wu S, Ricci C, Mozaffari M, Schaffer S (2005) Reversal of hyperglycemic preconditioning by angiotensin II: role of calcium transport. Am J Physiol Heart Circ Physiol 288:1965–1975

    Google Scholar 

  94. Wakasaki H, Koya D, Schoen FJ, Jirousek MR, Ways DK, Hoit BD et al (1997) Targeted overexpression of protein kinase C beta2 isoform in myocardium causes cardiomyopathy. Proc Natl Acad Sci USA 19:9320–9325

    Google Scholar 

  95. Yuan SY, Ustinova EE, Wu MH, Tinsley JH, Xu W, Korompai FL et al (2000) Protein kinase C activation contributes to microvascular barrier dysfunction in the heart at early stages of diabetes. Circ Res 87:412–417

    CAS  PubMed  Google Scholar 

  96. Inoguchi T, Sonta T, Tsubouchi H, Etoh T, Kakimoto M, Sonoda N et al (2003) Protein kinase C-dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes: role of vascular NAD(P)H oxidase. J Am Soc Nephrol 14:S227–S232

    CAS  PubMed  Google Scholar 

  97. Malhotra A, Begley R, Kang BP, Rana I, Liu J, Yang G et al (2005) PKC{epsilon} dependent survival signals in the diabetic heart. Am J Physiol. doi:101152/ajpheart012002004

    Google Scholar 

  98. Xin X, Khan ZA, Chen S, Chakrabarti S (2004) Extracellular signal-regulated kinase (ERK) in glucose-induced and endothelin-mediated fibronectin synthesis. Lab Invest 84:1451–1459

    CAS  PubMed  Google Scholar 

  99. Wold LE, Ren J (2004) Streptozotocin directly impairs cardiac contractile function in isolated ventricular myocytes via a p38 map kinase-dependent oxidative stress mechanism. Biochem Biophys Res Commun 318:1066–1071

    CAS  PubMed  Google Scholar 

  100. Rodrigues B, Cam MC, McNeill JH (1998) Metabolic disturbances in diabetic cardiomyopathy. Mol Cell Biochem 180:53–57

    CAS  PubMed  Google Scholar 

  101. Fang ZY, Prins JB, Marwick TH (2004) Diabetic cardiomyopathy: evidence mechanisms and therapeutic implications. Endocr Rev 25:543–567

    CAS  PubMed  Google Scholar 

  102. Nakayama H, Morozumi T, Nanto S, Shimonagata T, Ohara T, Takano Y et al (2001) Abnormal myocardial free fatty acid utilization deteriorates with morphological changes in the hypertensive heart. Jpn Circ J 9:783–787

    Google Scholar 

  103. Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M et al (2000) High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C–dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 49:1939–1945

    CAS  PubMed  Google Scholar 

  104. Kim F, Tysseling KA, Rice J, Pham M, Haji L, Gallis BM et al (2005) Free fatty acid impairment of nitric oxide production in endothelial cells is mediated by IKKbeta. Arterioscler Thromb Vasc Biol 25:989–994

    CAS  PubMed  Google Scholar 

  105. Steinberg HO, Paradisi G, Hook G, Crowder K, Cronin J, Baron AD (2000) Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production. Diabetes 49:1231–1238

    CAS  PubMed  Google Scholar 

  106. de Kreutzenberg SV, Crepaldi C, Marchetto S, Calo L, Tiengo A, Del Prato S et al (2000) Plasma free fatty acids and endothelium-dependent vasodilation: effect of chain-length and cyclooxygenase inhibition. J Clin Endocrinol Metab 85:793–798

    PubMed  Google Scholar 

  107. Stanley WC, Marzilli M (2003) Metabolic therapy in the treatment of ischaemic heart disease: the pharmacology of trimetazidine. Fundam Clin Pharmacol 17:133–145

    CAS  PubMed  Google Scholar 

  108. Rosano GM, Vitale C, Sposato B, Mercuro G, Fini M (2003) Trimetazidine improves left ventricular function in diabetic patients with coronary artery disease: a double-blind placebo-controlled study. Cardiovasc Diabetol 28:16

    Google Scholar 

  109. Vitale C, Wajngaten M, Sposato B, Gebara O, Rossini P, Fini M et al (2004) Trimetazidine improves left ventricular function and quality of life in elderly patients with coronary artery disease. Eur Heart J 25:1814–1821

    CAS  PubMed  Google Scholar 

  110. Li SH, McNeill JH (2001) In vivo effects of vanadium on GLUT4 translocation in cardiac tissue of STZ-diabetic rats. Mol Cell Biochem 217:121–129

    CAS  PubMed  Google Scholar 

  111. Ren J, Pulakat L, Whaley-Connell A, Sowers JR (2010) Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J Mol Med (Berl) 88:993–1001

    CAS  Google Scholar 

  112. Francis GA, Annicotte JS, Auwerx J (2003) PPAR-a effects on the heart and other vascular tissues. Am J Physiol 285:H1–H9

    CAS  Google Scholar 

  113. Gilde AJ, Bilsen M (2003) Peroxisome proliferator-activated receptors (PPARs): regulators of gene expression in heart and skeletal muscle. Acta Physiol Scand 178:425–434

    CAS  PubMed  Google Scholar 

  114. Lee CH, Olson P, Evans RM (2003) Lipid metabolism metabolic diseases and peroxisome proliferator-activated receptors. Endocrinology 144:2201–2207

    CAS  PubMed  Google Scholar 

  115. Finck BN, Lehman JJ, Leone TC, Welch MJ, Bennett MJ, Kovacs A et al (2002) The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest 109:121–130

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Finck BN, Han X, Courtois M, Aimond F, Nerbonne JM, Kovacs A et al (2003) A critical role for PPARalpha-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: modulation by dietary fat content. Proc Natl Acad Sci USA 100:1226–1231

    CAS  PubMed  Google Scholar 

  117. Liu Y, Zhu Y, Rannou F, Lee TS, Formentin K, Zeng L et al (2004) Laminar flow activates peroxisome proliferator-activated receptor-gamma in vascular endothelial cells. Circulation 110:1128–1133

    CAS  PubMed  Google Scholar 

  118. Hallsten K, Virtanen KA, Lonnqvist F, Janatuinen T, Turiceanu M, Ronnemaa T et al (2004) Enhancement of insulin-stimulated myocardial glucose uptake in patients with Type 2 diabetes treated with rosiglitazone. Diabet Med 21:1280–1287

    CAS  PubMed  Google Scholar 

  119. Decker P, Muller S (2002) Modulating poly (ADP-ribose) polymerase activity: potential for the prevention and therapy of pathogenic situations involving DNA damage and oxidative stress. Curr Pharm Biotechnol 3:275–283

    CAS  PubMed  Google Scholar 

  120. Du XL, Edelstein D, Rossetti L et al (2000) Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing. Proc Natl Acad Sci USA 97:12222–12226

    CAS  PubMed  Google Scholar 

  121. Garcia SF, Virag L, Jagtap P et al (2001) Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation. Nat Med 7:108–113

    Google Scholar 

  122. Zanetti M, Sato J, Katusic ZS et al (2000) Gene transfer of endothelial nitric oxide synthase alters endothelium-dependent relaxations in aortas from diabetic rabbits. Diabetologia 43:340–347

    CAS  PubMed  Google Scholar 

  123. Feng B, Chen S, Chiu J et al (2008) Regulation of cardiomyocyte hypertrophy in diabetes at the transcriptional level. Am J Physiol Endocrinol Metab 294:E1119–E1126

    CAS  PubMed  Google Scholar 

  124. Pacher P, Liaudet L, Soriano FG, Mabley JG, Szabo E, Szabo C (2002) The role of poly(ADP-ribose) polymerase activation in the development of myocardial and endothelial dysfunction in diabetes. Diabetes 51:514–521

    CAS  PubMed  Google Scholar 

  125. Szabo C (2002) PARP as a drug target for the therapy of diabetic cardiovascular dysfunction. Drug News Perspect 4:197–205

    Google Scholar 

  126. Masutani M, Suzuki H, Kamada N, Watanabe M, Ueda O, Nozaki T et al (1999) Poly(ADP-ribose) polymerase gene disruption conferred mice resistant to streptozotocin-induced diabetes. Proc Natl Acad Sci USA 96:2301–2304

    CAS  PubMed  Google Scholar 

  127. Pieper AA, Brat DJ, Krug DK, Watkins CC, Gupta A, Blackshaw S et al (1999) Poly(ADP-ribose) polymerase-deficient mice are protected from streptozotocin-induced diabetes. Proc Natl Acad Sci USA 96:3059–3064

    CAS  PubMed  Google Scholar 

  128. Wang C, George B, Chen S, Feng B, Li X, Chakrabarti S (2012) Genotoxic stress and activation of novel DNA repair enzymes in human endothelial cells and in the retinas and kidneys of streptozotocin diabetic rats. Diabetes Metab Res Rev 28:329–337

    PubMed  Google Scholar 

  129. Wakasaki H, Koya D, Schoen FJ et al (1997) Targeted overexpression of protein kinase C beta2 isoform in myocardium causes cardiomyopathy. Proc Natl Acad Sci USA 94:9320–9325

    CAS  PubMed  Google Scholar 

  130. Khan ZA, Chan BM, Uniyal S et al (2005) EDB fibronectin and angiogenesis—a novel mechanistic pathway. Angiogenesis 8:183–196

    CAS  PubMed  Google Scholar 

  131. Khan ZA, Farhangkhoee H, Mahon JL et al (2006) Endothelins: regulators of extracellular matrix protein production in diabetes. Exp Biol Med (Maywood) 231:1022–1029

    CAS  Google Scholar 

  132. Quehenberger P, Bierhaus A, Fasching P et al (2000) Endothelin 1 transcription is controlled by nuclear factor-kappaB in AGE-stimulated cultured endothelial cells. Diabetes 49:1561–1570

    CAS  PubMed  Google Scholar 

  133. Chen S, Feng B, George B et al (2010) Transcriptional co-activator p300 regulates glucose induced gene expression in the endothelial cells. Am J Physiol Endocrinol Metab 298:E127–E137

    CAS  PubMed  Google Scholar 

  134. Wilson KD, Li Z, Wagner R et al (2008) Transcriptome alteration in the diabetic heart by rosiglitazone: implications for cardiovascular mortality. PLoS ONE 3:e2609

    PubMed Central  PubMed  Google Scholar 

  135. Kaur H, Chen S, Xin X et al (2006) Diabetes-induced extracellular matrix protein expression is mediated by transcription coactivator p300. Diabetes 55:104–111

    Google Scholar 

  136. Bowie A, O’Neill LA (2000) Oxidative stress and nuclear factor-kappaB activation: a reassessment of the evidence in the light of recent discoveries. Biochem Pharmacol 59:13–23

    CAS  PubMed  Google Scholar 

  137. Baeuerle PA, Baltimore D (1996) NF-kappa B: 10 years after. Cell 87:13–20

    CAS  PubMed  Google Scholar 

  138. Suzuki YJ, Packer L (1993) Inhibition of NF-kappa B DNA binding activity by alphatocopheryl succinate. Biochem Mol Biol Int 31:693–700

    CAS  PubMed  Google Scholar 

  139. Nadler J, Winer L (1996) Free radicals, nitric oxide, and diabetic complications. In: LeRoith D, Taylor SI, Olefsky JM (eds) Diabetes mellitus: a fundamental and clinical text. Lippincott-Raven, Philadelphia, pp 840–848

    Google Scholar 

  140. Chen S, Khan ZA, Cukiernik M et al (2003) Differential activation of NF-kappa Band AP-1 in increased fibronectin synthesis in target organs of diabetic complications. Am J Physiol Endocrinol Metab 284:E1089–E1097

    CAS  PubMed  Google Scholar 

  141. Shaulian E, Karin M (2001) AP-1 in cell proliferation and survival. Oncogene 20:2390–2400

    CAS  PubMed  Google Scholar 

  142. Chinenov Y, Kerppola TK (2001) Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity. Oncogene 20:2438–2452

    CAS  PubMed  Google Scholar 

  143. Bakiri L, Lallemand D, Bossy-Wetzel E et al (2000) Cell cycle-dependent variations in c-Jun and JunB phosphorylation: a role in the control of cyclin D1 expression. EMBO J 19:2056–2068

    CAS  PubMed  Google Scholar 

  144. Shaulian E, Schreiber M, Piu F et al (2000) The mammalian UV response: c-Jun induction is required for exit from p53-imposed growth arrest. Cell 103:897–907

    CAS  PubMed  Google Scholar 

  145. McKinsey TA, Zhang CL, Olson EN (2002) MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem Sci 27:40–47

    CAS  PubMed  Google Scholar 

  146. Youn HD, Grozinger CM, Liu JO (2000) Calcium regulates transcriptional repression of myocyte enhancer factor 2 by histone deacetylase 4. J Biol Chem 275:22563–22567

    CAS  PubMed  Google Scholar 

  147. Youn HD, Chatila TA, Liu JO (2000) Integration of calcineurin and MEF2 signals by the coactivator p300 during T-cell apoptosis. EMBO J 19:4323–4331

    CAS  PubMed  Google Scholar 

  148. Czubryt MP, Olson EN (2004) Balancing contractility and energy production: the role of myocyte enhancer factor 2 (MEF2) in cardiac hypertrophy. Recent Prog Horm Res 59:105–124

    CAS  PubMed  Google Scholar 

  149. Pikkarainen S, Tokola H, Kerkela R et al (2004) GATA transcription factors in the developing and adult heart. Cardiovasc Res 63:196–207

    CAS  PubMed  Google Scholar 

  150. Morin S, Paradis P, Aries A et al (2001) Serum response factor-GATA ternary complex required for nuclear signaling by a G-protein-coupled receptor. Mol Cell Biol 21:1036–1044

    CAS  PubMed Central  PubMed  Google Scholar 

  151. He Q, Lapointe MC (2001) Src and Rac mediate endothelin-1 and lysophosphatidic acid stimulation of the human brain natriuretic peptide promoter. Hypertension 37:478–484

    CAS  PubMed  Google Scholar 

  152. Morimoto T, Hasegawa K, Kaburagi S et al (2000) Phosphorylation of GATA-4 is involved in alpha 1-adrenergic agonist-responsive transcription of the endothelin-1 gene in cardiac myocytes. J Biol Chem 275:13721–13726

    CAS  PubMed  Google Scholar 

  153. Wei JQ, Shehadeh LA, Mitrani JM et al (2008) Quantitative control of adaptive cardiac hypertrophy by acetyltransferase p300. Circulation 118:934–946

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Kerkela R, Pikkarainen S, Majalahti-Palviainen T et al (2002) Distinct roles of mitogen activated protein kinase pathways in GATA-4 transcription factor mediated regulation of B-type natriuretic peptide gene. J Biol Chem 277:13752–13760

    CAS  PubMed  Google Scholar 

  155. He X, Kan H, Cai L, Ma Q (2009) Nrf2 is critical in defense against high glucose-induced oxidative damage in cardiomyocytes. J Mol Cell Cardiol 46:47–58

    CAS  PubMed  Google Scholar 

  156. Tan Y, Ichikawa T, Li J, Si Q, Yang H, Chen X, Goldblatt CS, Meyer CJ, Li X, Cai L, Cui T (2011) Diabetic downregulation of Nrf2 activity via ERK contributes to oxidative stress-induced insulin resistance in cardiac cells in vitro and in vivo. Diabetes 60:625–633

    CAS  PubMed  Google Scholar 

  157. Yanazume T, Morimoto T, Wada H et al (2003) Biological role of p300 in cardiac myocytes. Mol Cell Biochem 248:115–119

    CAS  PubMed  Google Scholar 

  158. McKinsey TA, Olson EN (2005) Toward transcriptional therapies for the failing heart: chemical screens to modulate genes. J Clin Invest 115:538–546

    CAS  PubMed Central  PubMed  Google Scholar 

  159. McKinsey TA, Olson EN (2004) Cardiac histone acetylation—therapeutic opportunities abound. Trends Genet 20:206–213

    CAS  PubMed  Google Scholar 

  160. Goodman RH, Smolik S (2000) CBP/p300 in cell growth, transformation, and development. Genes Dev 14:1553–1577

    CAS  PubMed  Google Scholar 

  161. Avantaggiati ML, Carbone M, Graessmann A et al (1996) The SV40 large T antigen and adenovirus E1a oncoproteins interact with distinct isoforms of the transcriptional co-activator, p300. EMBO J 15:2236–2248

    CAS  PubMed  Google Scholar 

  162. Arias J, Alberts AS, Brindle P et al (1994) Activation of cAMP and mitogen responsive genes relies on a common nuclear factor. Nature 370:226–229

    CAS  PubMed  Google Scholar 

  163. Chen LF, Greene WC (2003) Regulation of distinct biological activities of the NF-kappaB transcription factor complex by acetylation. J Mol Med 81:549–557

    CAS  PubMed  Google Scholar 

  164. Zhong H, May MJ, Jimi E et al (2002) The phosphorylation status of nuclear NF-kappa B determines its association with CBP/p300 or HDAC-1. Mol Cell 9:625–636

    CAS  PubMed  Google Scholar 

  165. Giordano A, Avantaggiati ML (1999) p300 and CBP: partners for life and death. J Cell Physiol 181:218–230

    CAS  PubMed  Google Scholar 

  166. Yamashita K, Discher DJ, Hu J et al (2001) Molecular regulation of the endothelin-1 gene by hypoxia: contributions of hypoxia-inducible factor-1, activator protein-1, GATA-2, and p300/CBP. J Biol Chem 276:12645–12653

    CAS  PubMed  Google Scholar 

  167. Feng B, Chen S, George B et al (2010) miR133a regulates cardiomyocyte hypertrophy in diabetes. Diabetes Metab Res Rev 26:40–49

    CAS  PubMed  Google Scholar 

  168. Zhang CL, McKinsey TA, Chang S et al (2002) Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110:479–488

    CAS  PubMed  Google Scholar 

  169. Fischle W, Wang Y, Allis CD (2003) Histone and chromatin cross-talk. Curr Opin Cell Biol 15:172–183

    CAS  PubMed  Google Scholar 

  170. Verdin E, Dequiedt F, Kasler HG (2003) Class II histone deacetylases: versatile regulators. Trends Genet 19:286–293

    CAS  PubMed  Google Scholar 

  171. Chang S, McKinsey TA, Zhang CL et al (2004) Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol 24:8467–8476

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Bush E, Fielitz J, Melvin L et al (2004) A small molecular activator of cardiac hypertrophy uncovered in a chemical screen formodifiers of the calcineurin signaling pathway. Proc Natl Acad Sci USA 101:2870–2875

    CAS  PubMed  Google Scholar 

  173. Chuang JC, Jones PA (2007) Epigenetics and MicroRNAs. Pediatr Res 61:24R–29R

    CAS  PubMed  Google Scholar 

  174. Chen JF, Mandel EM, Thomson JM et al (2006) The role of microRNA-1 and microRNA-133 in skeletal muscleproliferation and differentiation. Nat Genet 38:228–233

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Saito Y, Liang G, Egger G et al (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogeneBCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9:435–443

    CAS  PubMed  Google Scholar 

  176. Scott GK, Mattie MD, Berger CE et al (2006) Rapid alteration of microRNAlevels by histone deacetylase inhibition. Cancer Res 66:1277–1281

    CAS  PubMed  Google Scholar 

  177. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    CAS  PubMed  Google Scholar 

  178. Egger G, Liang G, Aparicio A et al (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463

    CAS  PubMed  Google Scholar 

  179. van Rooij E, Sutherland LB, Liu N et al (2006) A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA 103:18255–18260

    PubMed  Google Scholar 

  180. Cheng Y, Ji R, Yue J et al (2007) MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy? Am J Pathol 170:1831–1840

    CAS  PubMed  Google Scholar 

  181. van Rooij E, Sutherland LB, Qi X et al (2007) Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316:575–579

    PubMed  Google Scholar 

  182. Carè A, Catalucci D, Felicetti F et al (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13:613–618

    PubMed  Google Scholar 

  183. Xiao J, Luo X, Lin H et al (2007) MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts. J Biol Chem 282:12363–12367

    CAS  PubMed  Google Scholar 

  184. Wang XH, Qian RZ, Zhang W et al (2009) MicroRNA-320 expression in myocardial microvascular endothelial cells and its relationship with insulin-like growth factor-1 in type 2 diabetic rats. Clin Exp Pharmacol Physiol 36:181–188

    PubMed  Google Scholar 

  185. Matkovich SJ, Wang W, Tu Y et al (2010) MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circ Res 106:166–175

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Feng B, Chen S, McArthur K, Wu Y, Sen S, Ding Q, Feldman RD, Chakrabarti S (2011) miR-146a-Mediated extracellular matrix protein production in chronic diabetes complications. Diabetes 60:2975–2984

    CAS  PubMed  Google Scholar 

  187. Engerman RL, Kern TS (1987) Progression of incipient diabetic retinopathy during good glycemic control. Diabetes 36:808–812

    CAS  PubMed  Google Scholar 

  188. Reddy MA, Villeneuve LM, Wang M et al (2008) Role of the lysine-specific demethylase 1 in the proinflammatory phenotype of vascular smooth muscle cells of diabetic mice. Circ Res 103:615–623

    CAS  PubMed Central  PubMed  Google Scholar 

  189. Villeneuve LM, Reddy MA, Lanting LL et al (2008) Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes. Proc Natl Acad Sci USA 105:9047–9052

    CAS  PubMed  Google Scholar 

  190. Brasacchio D, Okabe J, Tikellis C et al (2009) Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes 58:1229–1236

    CAS  PubMed  Google Scholar 

  191. El-Osta A, Brasacchio D, Yao D et al (2008) Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med 205:2409–2417

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge grant supports from the Canadian Diabetes Association the Canadian Institutes of Health Research, Heart and Stroke Foundation.

Conflict of interest

The authors have no conflict of interest or financial ties to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Chakrabarti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mortuza, R., Chakrabarti, S. Glucose-induced cell signaling in the pathogenesis of diabetic cardiomyopathy. Heart Fail Rev 19, 75–86 (2014). https://doi.org/10.1007/s10741-013-9381-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-013-9381-z

Keywords

Navigation