Skip to main content
Log in

Uric acid in heart failure: a biomarker or therapeutic target?

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

There is a need for a cost-effective prognostic biomarker in heart failure (HF). Substantial evidence suggests that uric acid (UA) is an independent marker for adverse prognosis in acute and chronic HF of varying severity. Whether UA is a merely a marker of poor prognosis or is an active participant in disease pathogenesis is currently unknown. In the setting of HF, at least two different processes can be responsible for increased UA: increased production, which may result from oxidative stress, and decreased excretion due to renal insufficiency, which can be a consequence of cardio-renal syndrome, renal congestion, or comorbidities. While pioneer studies have raised the possibility of preventing HF through the use of UA lowering agents, namely xanthine oxidase inhibitors and uricosurics, the literature is still conflicting on whether the reduction in UA will result in a measurable clinical benefit. In this review, we examine the evidence relating UA to HF prognosis, the mechanisms that contribute to increased UA levels in HF, and future novel treatments aimed at reducing UA levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kohn PM, Prozan GB (1959) Hyperuricemia; relationship to hypercholesteremia and acute myocardial infarction. J Am Med Assoc 170(16):1909–1912

    Article  PubMed  CAS  Google Scholar 

  2. Gertler MM, Garn SM, Levine SA (1951) Serum uric acid in relation to age and physique in health and in coronary heart disease. Ann Intern Med 34(6):1421–1431

    PubMed  CAS  Google Scholar 

  3. Strasak A, Ruttmann E, Brant L, Kelleher C, Klenk J, Concin H et al (2008) Serum uric acid and risk of cardiovascular mortality: a prospective long-term study of 83,683 Austrian men. Clin Chem 54(2):273–284. doi:10.1373/clinchem.2007.094425

    Article  PubMed  CAS  Google Scholar 

  4. Tamariz L, Harzand A, Palacio A, Verma S, Jones J, Hare J (2011) Uric acid as a predictor of all-cause mortality in heart failure: a meta-analysis. Congest Heart Fail 17(1):25–30. doi:10.1111/j.1751-7133.2011.00200.x

    Article  PubMed  Google Scholar 

  5. Feig DI, Kang DH, Johnson RJ (2008) Uric acid and cardiovascular risk. N Engl J Med 359(17):1811–1821. doi:10.1056/NEJMra0800885

    Article  PubMed  CAS  Google Scholar 

  6. Culleton BF, Larson MG, Kannel WB, Levy D (1999) Serum uric acid and risk for cardiovascular disease and death: the Framingham Heart Study. Ann Intern Med 131(1):7–13

    PubMed  CAS  Google Scholar 

  7. Duan X, Ling F (2008) Is uric acid itself a player or a bystander in the pathophysiology of chronic heart failure? Med Hypotheses 70(3):578–581. doi:10.1016/j.mehy.2007.06.018

    Article  PubMed  CAS  Google Scholar 

  8. Jankowska EA, Ponikowska B, Majda J, Zymlinski R, Trzaska M, Reczuch K et al (2007) Hyperuricaemia predicts poor outcome in patients with mild to moderate chronic heart failure. Int J Cardiol 115(2):151–155. doi:10.1016/j.ijcard.2005.10.033

    Article  PubMed  Google Scholar 

  9. Wu AH, Ghali JK, Neuberg GW, O’Connor CM, Carson PE, Levy WC (2010) Uric acid level and allopurinol use as risk markers of mortality and morbidity in systolic heart failure. Am Heart J 160(5):928–933. doi:10.1016/j.ahj.2010.08.006

    Article  PubMed  CAS  Google Scholar 

  10. Filippatos GS, Ahmed MI, Gladden JD, Mujib M, Aban IB, Love TE et al (2011) Hyperuricaemia, chronic kidney disease, and outcomes in heart failure: potential mechanistic insights from epidemiological data. Eur Heart J 32(6):712–720. doi:10.1093/eurheartj/ehq473

    Article  PubMed  CAS  Google Scholar 

  11. Hamaguchi S, Furumoto T, Tsuchihashi-Makaya M, Goto K, Goto D, Yokota T et al (2010) Hyperuricemia predicts adverse outcomes in patients with heart failure. Int J Cardiol. doi:10.1016/j.ijcard.2010.05.002

    PubMed  Google Scholar 

  12. Reyes AJ (2005) The increase in serum uric acid concentration caused by diuretics might be beneficial in heart failure. Eur J Heart Fail 7(4):461–467. doi:10.1016/j.ejheart.2004.03.020

    Article  PubMed  CAS  Google Scholar 

  13. Anker SD, Doehner W, Rauchhaus M, Sharma R, Francis D, Knosalla C et al (2003) Uric acid and survival in chronic heart failure: validation and application in metabolic, functional, and hemodynamic staging. Circulation 107(15):1991–1997. doi:10.1161/01.cir.0000065637.10517.a0

    Article  PubMed  Google Scholar 

  14. Cengel A, Turkoglu S, Turfan M, Boyaci B (2005) Serum uric acid levels as a predictor of in-hospital death in patients hospitalized for decompensated heart failure. Acta Cardiol 60(5):489–492

    Article  PubMed  Google Scholar 

  15. Batin P, Wickens M, McEntegart D, Fullwood L, Cowley AJ (1995) The importance of abnormalities of liver function tests in predicting mortality in chronic heart failure. Eur Heart J 16(11):1613–1618

    PubMed  CAS  Google Scholar 

  16. Sakai H, Tsutamoto T, Tsutsui T, Tanaka T, Ishikawa C, Horie M (2006) Serum level of uric acid, partly secreted from the failing heart, is a prognostic marker in patients with congestive heart failure. Circ J 70(8):1006–1011

    Article  PubMed  Google Scholar 

  17. Kim H, Shin HW, Son J, Yoon HJ, Park HS, Cho YK et al (2010) Uric Acid as prognostic marker in advanced nonischemic dilated cardiomyopathy: comparison with N-terminal pro B-type natriuretic peptide level. Congest Heart Fail 16(4):153–158. doi:10.1111/j.1751-7133.2010.00144.x

    Article  PubMed  CAS  Google Scholar 

  18. Pascual-Figal DA, Hurtado-Martinez JA, Redondo B, Antolinos MJ, Ruiperez JA, Valdes M (2007) Hyperuricaemia and long-term outcome after hospital discharge in acute heart failure patients. Eur J Heart Fail 9(5):518–524. doi:10.1016/j.ejheart.2006.09.001

    Article  PubMed  CAS  Google Scholar 

  19. Holme I, Aastveit AH, Hammar N, Jungner I, Walldius G (2009) Uric acid and risk of myocardial infarction, stroke and congestive heart failure in 417,734 men and women in the Apolipoprotein MOrtality RISk study (AMORIS). J Intern Med 266(6):558–570. doi:10.1111/j.1365-2796.2009.02133.x

    Article  PubMed  CAS  Google Scholar 

  20. Krishnan E (2009) Hyperuricemia and incident heart failure. Circ Heart Fail 2(6):556–562. doi:10.1161/circheartfailure.108.797662

    Article  PubMed  CAS  Google Scholar 

  21. Reichlin T, Potocki M, Breidthardt T, Noveanu M, Hartwiger S, Burri E, et al. (2009). Diagnostic and prognostic value of uric acid in patients with acute dyspnea. Am J Med 122(11):1054.e7–1054.e14. doi:10.1016/j.amjmed.2009.04.023

    Google Scholar 

  22. Alimonda AL, Nunez J, Nunez E, Husser O, Sanchis J, Bodi V et al (2009) Hyperuricemia in acute heart failure. More than a simple spectator? Eur J Intern Med 20(1):74–79. doi:10.1016/j.ejim.2008.04.007

    Article  PubMed  CAS  Google Scholar 

  23. Kittleson MM, Bead V, Fradley M, St John ME, Champion HC, Kasper EK et al (2007) Elevated uric acid levels predict allograft vasculopathy in cardiac transplant recipients. J Heart Lung Transplant 26(5):498–503. doi:10.1016/j.healun.2007.01.039

    Article  PubMed  Google Scholar 

  24. Arora S, Aukrust P, Ueland T, Broch K, Simonsen S, Gude E et al (2009) Elevated serum uric acid levels following heart transplantation predict all-cause and cardiac mortality. Eur J Heart Fail 11(10):1005–1013. doi:10.1093/eurjhf/hfp115

    Article  PubMed  CAS  Google Scholar 

  25. Meneshian A, Bulkley GB (2002) The physiology of endothelial xanthine oxidase: from urate catabolism to reperfusion injury to inflammatory signal transduction. Microcirculation 9(3):161–175. doi:10.1038/sj.mn.7800136

    PubMed  CAS  Google Scholar 

  26. Berry CE, Hare JM (2004) Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. J Physiol 555(Pt 3):589–606. doi:10.1113/jphysiol.2003.055913

    Article  PubMed  CAS  Google Scholar 

  27. Cooper D, Stokes KY, Tailor A, Granger DN (2002) Oxidative stress promotes blood cell-endothelial cell interactions in the microcirculation. Cardiovasc Toxicol 2(3):165–180

    Article  PubMed  CAS  Google Scholar 

  28. Gonzalez DR, Treuer AV, Castellanos J, Dulce RA, Hare JM (2010) Impaired S-nitrosylation of the ryanodine receptor caused by xanthine oxidase activity contributes to calcium leak in heart failure. J Biol Chem 285(37):28938–28945. doi:10.1074/jbc.M110.154948

    Article  PubMed  CAS  Google Scholar 

  29. Podzuweit T, Beck H, Muller A, Bader R, Gorlach G, Scheld HH (1991) Absence of xanthine oxidoreductase activity in human myocardium. Cardiovasc Res 25(10):820–830

    Article  PubMed  CAS  Google Scholar 

  30. Cappola TP, Kass DA, Nelson GS, Berger RD, Rosas GO, Kobeissi ZA et al (2001) Allopurinol improves myocardial efficiency in patients with idiopathic dilated cardiomyopathy. Circulation 104(20):2407–2411

    Article  PubMed  CAS  Google Scholar 

  31. Lippi G, Montagnana M, Franchini M, Favaloro EJ, Targher G (2008) The paradoxical relationship between serum uric acid and cardiovascular disease. Clin Chim Acta 392(1–2):1–7. doi:10.1016/j.cca.2008.02.024

    Article  PubMed  CAS  Google Scholar 

  32. Weinman EJ, Eknoyan G, Suki WN (1975) The influence of the extracellular fluid volume on the tubular reabsorption of uric acid. J Clin Invest 55(2):283–291. doi:10.1172/jci107931

    Article  PubMed  CAS  Google Scholar 

  33. Johns EJ (1989) Role of angiotensin II and the sympathetic nervous system in the control of renal function. J Hypertens 7(9):695–701

    Article  PubMed  CAS  Google Scholar 

  34. Yamamoto T, Moriwaki Y, Takahashi S, Tsutsumi Z, Hada T (2001) Effect of norepinephrine on the urinary excretion of purine bases and oxypurinol. Metabolism 50(10):1230–1233. doi:10.1053/meta.2001.26709

    Article  PubMed  CAS  Google Scholar 

  35. Hoieggen A, Alderman MH, Kjeldsen SE, Julius S, Devereux RB, De Faire U et al (2004) The impact of serum uric acid on cardiovascular outcomes in the LIFE study. Kidney Int 65(3):1041–1049. doi:10.1111/j.1523-1755.2004.00484.x

    Article  PubMed  CAS  Google Scholar 

  36. Desai RV, Ahmed MI, Fonarow GC, Filippatos GS, White M, Aban IB et al (2010) Effect of serum insulin on the association between hyperuricemia and incident heart failure. Am J Cardiol 106(8):1134–1138. doi:10.1016/j.amjcard.2010.06.023

    Article  PubMed  CAS  Google Scholar 

  37. Doehner W, Schoene N, Rauchhaus M, Leyva-Leon F, Pavitt DV, Reaveley DA et al (2002) Effects of xanthine oxidase inhibition with allopurinol on endothelial function and peripheral blood flow in hyperuricemic patients with chronic heart failure: results from 2 placebo-controlled studies. Circulation 105(22):2619–2624

    Article  PubMed  CAS  Google Scholar 

  38. Ruggiero C, Cherubini A, Ble A, Bos AJ, Maggio M, Dixit VD et al (2006) Uric acid and inflammatory markers. Eur Heart J 27(10):1174–1181. doi:10.1093/eurheartj/ehi879

    Article  PubMed  CAS  Google Scholar 

  39. de Jong JW, Schoemaker RG, de Jonge R, Bernocchi P, Keijzer E, Harrison R et al (2000) Enhanced expression and activity of xanthine oxidoreductase in the failing heart. J Mol Cell Cardiol 32(11):2083–2089. doi:10.1006/jmcc.2000.1240

    Article  PubMed  Google Scholar 

  40. McCord JM, Fridovich I (1968) The reduction of cytochrome c by milk xanthine oxidase. J Biol Chem 243(21):5753–5760

    PubMed  CAS  Google Scholar 

  41. Khan SA, Lee K, Minhas KM, Gonzalez DR, Raju SV, Tejani AD et al (2004) Neuronal nitric oxide synthase negatively regulates xanthine oxidoreductase inhibition of cardiac excitation-contraction coupling. Proc Natl Acad Sci USA 101(45):15944–15948. doi:10.1073/pnas.0404136101

    Article  PubMed  CAS  Google Scholar 

  42. Mazzali M, Hughes J, Kim YG, Jefferson JA, Kang DH, Gordon KL et al (2001) Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension 38(5):1101–1106

    Article  PubMed  CAS  Google Scholar 

  43. Herrmann R, Sandek A, von Haehling S, Doehner W, Schmidt HB, Anker SD et al (2010) Risk stratification in patients with chronic heart failure based on metabolic-immunological, functional and haemodynamic parameters. Int J Cardiol. doi:10.1016/j.ijcard.2010.10.028

    Google Scholar 

  44. Leyva F, Anker SD, Godsland IF, Teixeira M, Hellewell PG, Kox WJ et al (1998) Uric acid in chronic heart failure: a marker of chronic inflammation. Eur Heart J 19(12):1814–1822

    Article  PubMed  CAS  Google Scholar 

  45. Bergamini C, Cicoira M, Rossi A, Vassanelli C (2009) Oxidative stress and hyperuricaemia: pathophysiology, clinical relevance, and therapeutic implications in chronic heart failure. Eur J Heart Fail 11(5):444–452. doi:10.1093/eurjhf/hfp042

    Article  PubMed  CAS  Google Scholar 

  46. Ekundayo OJ, Dell’Italia LJ, Sanders PW, Arnett D, Aban I, Love TE et al (2010) Association between hyperuricemia and incident heart failure among older adults: a propensity-matched study. Int J Cardiol 142(3):279–287. doi:10.1016/j.ijcard.2009.01.010

    Article  PubMed  Google Scholar 

  47. Misra D, Zhu Y, Zhang Y, Choi HK (2011) The independent impact of congestive heart failure status and diuretic use on serum uric acid among men with a high cardiovascular risk profile: A Prospective Longitudinal Study. Semin Arthritis Rheum. doi:10.1016/j.semarthrit.2011.02.002

    PubMed  Google Scholar 

  48. Steele TH, Oppenheimer S (1969) Factors affecting urate excretion following diuretic administration in man. Am J Med 47(4):564–574

    Article  PubMed  CAS  Google Scholar 

  49. Amin A, Vakilian F, Maleki M (2011) Serum uric acid levels correlate with filling pressures in systolic heart failure. Congest Heart Fail 17(2):80–84. doi:10.1111/j.1751-7133.2010.00205.x

    Article  PubMed  Google Scholar 

  50. Kittleson MM, St John ME, Bead V, Champion HC, Kasper EK, Russell SD et al (2007) Increased levels of uric acid predict haemodynamic compromise in patients with heart failure independently of B-type natriuretic peptide levels. Heart 93(3):365–367. doi:10.1136/hrt.2006.090845

    Article  PubMed  CAS  Google Scholar 

  51. Chrysohoou C, Pitsavos C, Barbetseas J, Brili S, Kotroyiannis I, Papademetriou L et al (2008) Serum uric acid levels correlate with left atrial function and systolic right ventricular function in patients with newly diagnosed heart failure: the hellenic heart failure study. Congest Heart Fail 14(5):229–233. doi:10.1111/j.1751-7133.2008.00005.x

    Article  PubMed  Google Scholar 

  52. Cicoira M, Zanolla L, Rossi A, Golia G, Franceschini L, Brighetti G et al (2002) Elevated serum uric acid levels are associated with diastolic dysfunction in patients with dilated cardiomyopathy. Am Heart J 143(6):1107–1111

    Article  PubMed  Google Scholar 

  53. Bendayan D, Shitrit D, Ygla M, Huerta M, Fink G, Kramer MR (2003) Hyperuricemia as a prognostic factor in pulmonary arterial hypertension. Respir Med 97(2):130–133

    Article  PubMed  CAS  Google Scholar 

  54. Dimitroulas T, Giannakoulas G, Dimitroula H, Sfetsios T, Parcharidou D, Karvounis H et al (2011) Significance of serum uric acid in pulmonary hypertension due to systemic sclerosis: a pilot study. Rheumatol Int 31(2):263–267. doi:10.1007/s00296-010-1557-4

    Article  PubMed  CAS  Google Scholar 

  55. Hoeper MM, Hohlfeld JM, Fabel H (1999) Hyperuricaemia in patients with right or left heart failure. Eur Respir J 13(3):682–685

    Article  PubMed  CAS  Google Scholar 

  56. Turnheim K, Krivanek P, Oberbauer R (1999) Pharmacokinetics and pharmacodynamics of allopurinol in elderly and young subjects. Br J Clin Pharmacol 48(4):501–509

    Article  PubMed  CAS  Google Scholar 

  57. George J, Carr E, Davies J, Belch JJ, Struthers A (2006) High-dose allopurinol improves endothelial function by profoundly reducing vascular oxidative stress and not by lowering uric acid. Circulation 114(23):2508–2516. doi:10.1161/circulationaha.106.651117

    Article  PubMed  CAS  Google Scholar 

  58. Farquharson CA, Butler R, Hill A, Belch JJ, Struthers AD (2002) Allopurinol improves endothelial dysfunction in chronic heart failure. Circulation 106(2):221–226

    Article  PubMed  CAS  Google Scholar 

  59. Ekelund UE, Harrison RW, Shokek O, Thakkar RN, Tunin RS, Senzaki H et al (1999) Intravenous allopurinol decreases myocardial oxygen consumption and increases mechanical efficiency in dogs with pacing-induced heart failure. Circ Res 85(5):437–445

    Article  PubMed  CAS  Google Scholar 

  60. Ukai T, Cheng CP, Tachibana H, Igawa A, Zhang ZS, Cheng HJ et al (2001) Allopurinol enhances the contractile response to dobutamine and exercise in dogs with pacing-induced heart failure. Circulation 103(5):750–755

    Article  PubMed  CAS  Google Scholar 

  61. Minhas KM, Saraiva RM, Schuleri KH, Lehrke S, Zheng M, Saliaris AP et al (2006) Xanthine oxidoreductase inhibition causes reverse remodeling in rats with dilated cardiomyopathy. Circ Res 98(2):271–279. doi:10.1161/01.res.0000200181.59551.71

    Article  PubMed  CAS  Google Scholar 

  62. Engberding N, Spiekermann S, Schaefer A, Heineke A, Wiencke A, Muller M et al (2004) Allopurinol attenuates left ventricular remodeling and dysfunction after experimental myocardial infarction: a new action for an old drug? Circulation 110(15):2175–2179. doi:10.1161/01.cir.0000144303.24894.1c

    Article  PubMed  CAS  Google Scholar 

  63. Stull LB, Leppo MK, Szweda L, Gao WD, Marban E (2004) Chronic treatment with allopurinol boosts survival and cardiac contractility in murine postischemic cardiomyopathy. Circ Res 95(10):1005–1011. doi:10.1161/01.RES.0000148635.73331.c5

    Article  PubMed  CAS  Google Scholar 

  64. Duncan JG, Ravi R, Stull LB, Murphy AM (2005) Chronic xanthine oxidase inhibition prevents myofibrillar protein oxidation and preserves cardiac function in a transgenic mouse model of cardiomyopathy. Am J Physiol Heart Circ Physiol 289(4):H1512–1518. doi:10.1152/ajpheart.00168.2005

    Article  PubMed  CAS  Google Scholar 

  65. Gavin AD, Struthers AD (2005) Allopurinol reduces B-type natriuretic peptide concentrations and haemoglobin but does not alter exercise capacity in chronic heart failure. Heart 91(6):749–753. doi:10.1136/hrt.2004.040477

    Article  PubMed  CAS  Google Scholar 

  66. Cingolani HE, Plastino JA, Escudero EM, Mangal B, Brown J, Perez NG (2006) The effect of xanthine oxidase inhibition upon ejection fraction in heart failure patients: La Plata Study. J Card Fail 12(7):491–498. doi:10.1016/j.cardfail.2006.05.005

    Article  PubMed  CAS  Google Scholar 

  67. Greig D, Alcaino H, Castro PF, Garcia L, Verdejo HE, Navarro M et al (2011) Xanthine-oxidase inhibitors and statins in chronic heart failure: effects on vascular and functional parameters. J Heart Lung Transplant 30(4):408–413. doi:10.1016/j.healun.2010.10.003

    Article  PubMed  Google Scholar 

  68. Nasr G, Maurice C (2010) Allopurinol and global left myocardial function in heart failure patients. J Cardiovasc Dis Res 1(4):191–195. doi:10.4103/0975-3583.74262

    Article  PubMed  Google Scholar 

  69. Hare JM, Mangal B, Brown J, Fisher C Jr, Freudenberger R, Colucci WS et al (2008) Impact of oxypurinol in patients with symptomatic heart failure. Results of the OPT-CHF study. J Am Coll Cardiol 51(24):2301–2309. doi:10.1016/j.jacc.2008.01.068

    Article  PubMed  CAS  Google Scholar 

  70. Ogino K, Kato M, Furuse Y, Kinugasa Y, Ishida K, Osaki S et al (2010) Uric acid-lowering treatment with benzbromarone in patients with heart failure: a double-blind placebo-controlled crossover preliminary study. Circ Heart Fail 3(1):73–81. doi:10.1161/circheartfailure.109.868604

    Article  PubMed  CAS  Google Scholar 

  71. Alcaino H, Greig D, Chiong M, Verdejo H, Miranda R, Concepcion R et al (2008) Serum uric acid correlates with extracellular superoxide dismutase activity in patients with chronic heart failure. Eur J Heart Fail 10(7):646–651. doi:10.1016/j.ejheart.2008.05.008

    Article  PubMed  CAS  Google Scholar 

  72. Doehner W, Springer J, Landmesser U, Struthers AD, Anker SD (2008) Uric acid in chronic heart failure–current pathophysiological concepts. Eur J Heart Fail 10(12):1269–1270. doi:10.1016/j.ejheart.2008.10.005

    Article  PubMed  CAS  Google Scholar 

  73. Wei L, Mackenzie IS, Chen Y, Struthers AD, MacDonald TM (2011) Impact of allopurinol use on urate concentration and cardiovascular outcome. Br J Clin Pharmacol 71(4):600–607. doi:10.1111/j.1365-2125.2010.03887.x

    Article  PubMed  CAS  Google Scholar 

  74. Strasak AM, Kelleher CC, Brant LJ, Rapp K, Ruttmann E, Concin H et al (2008) Serum uric acid is an independent predictor for all major forms of cardiovascular death in 28,613 elderly women: a prospective 21-year follow-up study. Int J Cardiol 125(2):232–239. doi:10.1016/j.ijcard.2007.11.094

    Article  PubMed  Google Scholar 

  75. Struthers AD, Donnan PT, Lindsay P, McNaughton D, Broomhall J, MacDonald TM (2002) Effect of allopurinol on mortality and hospitalisations in chronic heart failure: a retrospective cohort study. Heart 87(3):229–234

    Article  PubMed  CAS  Google Scholar 

  76. Hare JM, Johnson RJ (2003) Uric acid predicts clinical outcomes in heart failure: insights regarding the role of xanthine oxidase and uric acid in disease pathophysiology. Circulation 107(15):1951–1953. doi:10.1161/01.cir.0000066420.36123.35

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

Drs. Kaufman and Guglin have no potential conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maya Guglin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaufman, M., Guglin, M. Uric acid in heart failure: a biomarker or therapeutic target?. Heart Fail Rev 18, 177–186 (2013). https://doi.org/10.1007/s10741-012-9322-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-012-9322-2

Keywords

Navigation