Skip to main content
Log in

Diastolic ventricular support with cardiac support devices: an alternative approach to prevent adverse ventricular remodeling

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Heart failure is a global epidemic with limited therapy. Abnormal left ventricular wall stress in the diseased myocardium results in a biochemical positive feedback loop that results in global ventricular remodeling and further deterioration of myocardial function. Mechanical myocardial restraints such as the Acorn CorCap and Paracor HeartNet ventricular restraints have attempted to minimize diastolic ventricular wall stress and limit adverse ventricular remodeling. Unfortunately, these therapies have not yielded viable clinical therapies for heart failure. Cellular and novel biopolymer-based therapies aimed at stabilizing pathologic myocardium hold promise for translation to clinical therapy in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lloyd-Jones D, Adams RJ, Brown TM et al (2010) Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation 121:e46–e215

    Article  PubMed  Google Scholar 

  2. Boodhwani M, Sodha NR, Laham RJ et al (2006) The future of therapeutic myocardial angiogenesis. Shock 26:332–341

    Article  PubMed  CAS  Google Scholar 

  3. Araszkiewicz A, Grajek S, Lesiak M et al (2006) Effect of impaired myocardial reperfusion on left ventricular remodeling in patients with anterior wall acute myocardial infarction treated with primary coronary intervention. Am J Cardiol 98:725–728

    Article  PubMed  Google Scholar 

  4. Bolognese L, Carrabba N, Parodi G et al (2004) Impact of microvascular dysfunction on left ventricular remodeling and long-term clinical outcome after primary coronary angioplasty for acute myocardial infarction. Circulation 109:1121–1126

    Article  PubMed  Google Scholar 

  5. Hu Q, Wang X, Lee J et al (2006) Profound bioenergetic abnormalities in peri-infarct myocardial regions. Am J Physiol Heart Circ Physiol 291:H648–H657

    Article  PubMed  CAS  Google Scholar 

  6. Braunwald E, Bristow MR (2000) Congestive heart failure: fifty years of progress. Circulation 102:IV14–IV23

    PubMed  CAS  Google Scholar 

  7. Benjamin IJ, Schneider MD (2005) Learning from failure: congestive heart failure in the postgenomic age. J Clin Invest 115:495–499

    PubMed  CAS  Google Scholar 

  8. Canty JM Jr, Suzuki G, Banas MD et al (2004) Hibernating myocardium: chronically adapted to ischemia but vulnerable to sudden death. Circ Res 94:1142–1149

    Article  PubMed  CAS  Google Scholar 

  9. Ingwall JS (1993) Is cardiac failure a consequence of decreased energy reserve? Circulation 87:58–62

    Google Scholar 

  10. Neubauer S, Horn M, Cramer M et al (1997) Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation 96:2190–2196

    Article  PubMed  CAS  Google Scholar 

  11. Nascimben L, Ingwall JS, Pauletto P et al (1996) Creatine kinase system in failing and nonfailing human myocardium. Circulation 94:1894–1901

    Article  PubMed  CAS  Google Scholar 

  12. Jayasankar V, Woo YJ, Bish LT et al (2004) Inhibition of matrix metalloproteinase activity by TIMP-1 gene transfer effectively treats ischemic cardiomyopathy. Circulation 110:II180–II186

    Article  PubMed  Google Scholar 

  13. Jackson BM, Gorman JH, Moainie SL et al (2002) Extension of borderzone myocardium in postinfarction dilated cardiomyopathy. J Am Coll Cardiol 40:1160–1167 (discussion 1168–1171)

    Article  PubMed  Google Scholar 

  14. Cheng A, Langer F, Nguyen TC et al (2006) Transmural left ventricular shear strain alterations adjacent to and remote from infarcted myocardium. J Heart Valve Dis 15:209–218 (discussion 218)

    PubMed  Google Scholar 

  15. Saraste A, Pulkki K, Kallajoki M et al (1997) Apoptosis in human acute myocardial infarction. Circulation 95:320–323

    Article  PubMed  CAS  Google Scholar 

  16. Olivetti G, Abbi R, Quaini F et al (1997) Apoptosis in the failing human heart. N Engl J Med 336:1131–1141

    Article  PubMed  CAS  Google Scholar 

  17. Wilson EM, Moainie SL, Baskin JM et al (2003) Region- and type-specific induction of matrix metalloproteinases in post-myocardial infarction remodeling. Circulation 107:2857–2863

    Article  PubMed  CAS  Google Scholar 

  18. Narula J, Dawson MS, Singh BK et al (2000) Noninvasive characterization of stunned, hibernating, remodeled and nonviable myocardium in ischemic cardiomyopathy. J Am Coll Cardiol 36:1913–1919

    Article  PubMed  CAS  Google Scholar 

  19. Mott BD, Oh JH, Misawa Y et al (1998) Mechanisms of cardiomyoplasty: comparative effects of adynamic versus dynamic cardiomyoplasty. Ann Thorac Surg 65:1039–1044 (discussion 1044–1045)

    Article  PubMed  CAS  Google Scholar 

  20. Blom AS, Mukherjee R, Pilla JJ et al (2005) Cardiac support device modifies left ventricular geometry and myocardial structure after myocardial infarction. Circulation 112:1274–1283

    Article  PubMed  Google Scholar 

  21. Blom AS, Pilla JJ, Gorman RC III et al (2005) Infarct size reduction and attenuation of global left ventricular remodeling with the CorCap cardiac support device following acute myocardial infarction in sheep. Heart Fail Rev 10:125–139

    Article  PubMed  Google Scholar 

  22. Blom AS, Pilla JJ, Arkles J et al (2007) Ventricular restraint prevents infarct expansion and improves borderzone function after myocardial infarction: a study using magnetic resonance imaging, three-dimensional surface modeling, and myocardial tagging. Ann Thorac Surg 84:2004–2010

    Article  PubMed  Google Scholar 

  23. Pilla JJ, Blom AS, Brockman DJ et al (2002) Ventricular constraint using the acorn cardiac support device reduces myocardial akinetic area in an ovine model of acute infarction. Circulation 106:I207–I211

    PubMed  Google Scholar 

  24. Pilla JJ, Blom AS, Gorman JH III et al (2005) Early postinfarction ventricular restraint improves borderzone wall thickening dynamics during remodeling. Ann Thorac Surg 80:2257–2262

    Article  PubMed  Google Scholar 

  25. Enomoto Y, Gorman JH III, Moainie SL et al (2005) Early ventricular restraint after myocardial infarction: extent of the wrap determines the outcome of remodeling. Ann Thorac Surg 79:881–887 (discussion 881–887)

    Article  PubMed  Google Scholar 

  26. Cheng A, Nguyen TC, Malinowski M et al (2006) Passive ventricular constraint prevents transmural shear strain progression in left ventricle remodeling. Circulation 114:I79–I86

    Article  PubMed  Google Scholar 

  27. Raman JS, Byrne MJ, Power JM et al (2003) Ventricular constraint in severe heart failure halts decline in cardiovascular function associated with experimental dilated cardiomyopathy. Ann Thorac Surg 76:141–147

    Article  PubMed  Google Scholar 

  28. Power JM, Raman J, Dornom A et al (1999) Passive ventricular constraint amends the course of heart failure: a study in an ovine model of dilated cardiomyopathy. Cardiovasc Res 44:549–555

    Article  PubMed  CAS  Google Scholar 

  29. Mann DL, Acker MA, Jessup M et al (2007) Clinical evaluation of the CorCap Cardiac Support Device in patients with dilated cardiomyopathy. Ann Thorac Surg 84:1226–1235

    Article  PubMed  Google Scholar 

  30. Acker MA, Bolling S, Shemin R et al (2006) Mitral valve surgery in heart failure: insights from the Acorn Clinical Trial. J Thorac Cardiovasc Surg 132:568–577 (577 e1-4)

    Article  PubMed  Google Scholar 

  31. Starling RC, Jessup M, Oh JK et al (2007) Sustained benefits of the CorCap Cardiac Support Device on left ventricular remodeling: three year follow-up results from the Acorn clinical trial. Ann Thorac Surg 84:1236–1242

    Article  PubMed  Google Scholar 

  32. Mann DL, Kubo SH, Sabbah HN et al. (2011) Beneficial effects of the CorCap cardiac support device: five-year results from the Acorn Trial. J Thorac Cardiovasc Surg. doi:10.1016/j.jtcvs.2011.06.014

  33. Acker MA, Jessup M, Bolling SF et al (2011) Mitral valve repair in heart failure: five-year follow-up from the mitral valve replacement stratum of the Acorn randomized trial. J Thorac Cardiovasc Surg 142:569–574 (e1)

    Article  PubMed  Google Scholar 

  34. Lembcke A, Dushe S, Dohmen PM et al (2006) Early and late effects of passive epicardial constraint on left ventricular geometry: ellipsoidal re-shaping confirmed by electron-beam computed tomography. J Heart Lung Transplant 25:90–98

    Article  PubMed  Google Scholar 

  35. Lembcke A, Dushe S, Enzweiler CN et al (2004) Passive external cardiac constraint improves segmental left ventricular wall motion and reduces akinetic area in patients with non-ischemic dilated cardiomyopathy. Eur J Cardiothorac Surg 25:84–90

    Article  PubMed  Google Scholar 

  36. Konertz WF, Shapland JE, Hotz H et al (2001) Passive containment and reverse remodeling by a novel textile cardiac support device. Circulation 104:I270–I275

    Article  PubMed  CAS  Google Scholar 

  37. Magovern JA (2005) Experimental and clinical studies with the Paracor cardiac restraint device. Semin Thorac Cardiovasc Surg 17:364–368

    Article  PubMed  Google Scholar 

  38. Magovern JA, Teekell-Taylor L, Mankad S et al (2006) Effect of a flexible ventricular restraint device on cardiac remodeling after acute myocardial infarction. ASAIO J 52:196–200

    Article  PubMed  Google Scholar 

  39. Dixon JA, Goodman AM, Gaillard WF II et al (2011) Hemodynamics and myocardial blood flow patterns after placement of a cardiac passive restraint device in a model of dilated cardiomyopathy. J Thorac Cardiovasc Surg 142(5):1038–1045

    Article  PubMed  Google Scholar 

  40. Klodell CT Jr, McGiffin DC, Rayburn BK et al (2007) Initial United States experience with the Paracor HeartNet myocardial constraint device for heart failure. J Thorac Cardiovasc Surg 133:204–209

    Article  PubMed  Google Scholar 

  41. Klodell CT Jr, Aranda JM Jr, McGiffin DC et al (2008) Worldwide surgical experience with the Paracor HeartNet cardiac restraint device. J Thorac Cardiovasc Surg 135:188–195

    Article  PubMed  Google Scholar 

  42. Fukamachi K, Popovic ZB, Inoue M et al (2004) Changes in mitral annular and left ventricular dimensions and left ventricular pressure-volume relations after off-pump treatment of mitral regurgitation with the Coapsys device. Eur J Cardiothorac Surg 25:352–357

    Article  PubMed  Google Scholar 

  43. Fukamachi K, Inoue M, Popovic Z et al (2005) Optimal mitral annular and subvalvular shape change created by the Coapsys device to treat functional mitral regurgitation. ASAIO J 51:17–21

    Article  PubMed  Google Scholar 

  44. Grossi EA, Woo YJ, Schwartz CF et al (2006) Comparison of Coapsys annuloplasty and internal reduction mitral annuloplasty in the randomized treatment of functional ischemic mitral regurgitation: impact on the left ventricle. J Thorac Cardiovasc Surg 131:1095–1098

    Article  PubMed  CAS  Google Scholar 

  45. Grossi EA, Saunders PC, Woo YJ et al (2005) Intraoperative effects of the coapsys annuloplasty system in a randomized evaluation (RESTOR-MV) of functional ischemic mitral regurgitation. Ann Thorac Surg 80:1706–1711

    Article  PubMed  Google Scholar 

  46. Mishra YK, Mittal S, Jaguri P et al (2006) Coapsys mitral annuloplasty for chronic functional ischemic mitral regurgitation: 1-year results. Ann Thorac Surg 81:42–46

    Article  PubMed  Google Scholar 

  47. Grossi EA, Patel N, Woo YJ et al (2010) Outcomes of the RESTOR-MV trial (randomized evaluation of a surgical treatment for off-pump repair of the mitral valve). J Am Coll Cardiol 56:1984–1993

    Article  PubMed  Google Scholar 

  48. Woo YJ, Panlilio CM, Cheng RK et al (2006) Therapeutic delivery of cyclin A2 induces myocardial regeneration and enhances cardiac function in ischemic heart failure. Circulation 114:I206–I213

    Article  PubMed  Google Scholar 

  49. Woo YJ, Panlilio CM, Cheng RK et al (2007) Myocardial regeneration therapy for ischemic cardiomyopathy with cyclin A2. J Thorac Cardiovasc Surg 133:927–933

    Article  PubMed  CAS  Google Scholar 

  50. Aghila Rani KG, Jayakumar K, Srinivas G et al (2008) Isolation of ckit-positive cardiosphere-forming cells from human atrial biopsy. Asian Cardiovasc Thorac Ann 16:50–56

    PubMed  Google Scholar 

  51. Davis DR, Kizana E, Terrovitis J et al (2011) Isolation and expansion of functionally-competent cardiac progenitor cells directly from heart biopsies. J Mol Cell Cardiol 49:312–321

    Article  Google Scholar 

  52. Davis DR, Zhang Y, Smith RR et al (2009) Validation of the cardiosphere method to culture cardiac progenitor cells from myocardial tissue. PLoS ONE 4:e7195

    Article  PubMed  Google Scholar 

  53. Johnston PV, Sasano T, Mills K et al (2009) Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy. Circulation 120:1075–1083 (7 p following 1083)

    Article  PubMed  CAS  Google Scholar 

  54. Lee ST, White AJ, Matsushita S et al (2011) Intramyocardial injection of autologous cardiospheres or cardiosphere-derived cells preserves function and minimizes adverse ventricular remodeling in pigs with heart failure post-myocardial infarction. J Am Coll Cardiol 57:455–465

    Article  PubMed  Google Scholar 

  55. Smith RR, Barile L, Cho HC et al (2007) Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115:896–908

    Article  PubMed  Google Scholar 

  56. Zakharova L, Mastroeni D, Mutlu N et al (2011) Transplantation of cardiac progenitor cell sheet onto infarcted heart promotes cardiogenesis and improves function. Cardiovasc Res 87:40–49

    Article  Google Scholar 

  57. Berry MF, Engler AJ, Woo YJ et al (2006) Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. Am J Physiol Heart Circ Physiol 290:H2196–H2203

    Article  PubMed  CAS  Google Scholar 

  58. Hamamoto H, Gorman JH III, Ryan LP et al (2009) Allogeneic mesenchymal precursor cell therapy to limit remodeling after myocardial infarction: the effect of cell dosage. Ann Thorac Surg 87:794–801

    Article  PubMed  Google Scholar 

  59. Tamaki T, Akatsuka A, Okada Y et al (2008) Cardiomyocyte formation by skeletal muscle-derived multi-myogenic stem cells after transplantation into infarcted myocardium. PLoS ONE 3:e1789

    Article  PubMed  Google Scholar 

  60. Freyman T, Polin G, Osman H et al (2006) A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur Heart J 27:1114–1122

    Article  PubMed  Google Scholar 

  61. Frederick JR, Fitzpatrick JR III, McCormick RC et al (2010) Stromal cell-derived factor-1alpha activation of tissue-engineered endothelial progenitor cell matrix enhances ventricular function after myocardial infarction by inducing neovasculogenesis. Circulation 122:S107–S117

    Article  PubMed  Google Scholar 

  62. Simpson D, Liu H, Fan TH et al (2007) A tissue engineering approach to progenitor cell delivery results in significant cell engraftment and improved myocardial remodeling. Stem Cells 25:2350–2357

    Article  PubMed  Google Scholar 

  63. Mann DL, Acker MA, Jessup M et al (2004) Rationale, design, and methods for a pivotal randomized clinical trial for the assessment of a cardiac support device in patients with New York health association class III-IV heart failure. J Card Fail 10:185–192

    Article  PubMed  Google Scholar 

  64. Grossi EA, Saunders PC, Woo YJ, Gangahar DM, Laschinger JC, Kress DC, Caskey MP, Schwartz CF, Wudel J (2005) Intraoperative effects of the coapsys annuloplasty system in a randomized evaluation (RESTORE-MV) of functional ischemic mitral regurgitation. Ann Thor Surg 80(5):1706–1711

    Article  Google Scholar 

  65. Fukamachi K, Inoue M, Doi K, Schenk S, Nemeh H, Faber C, Navia JL, McCarthy PM (2005) Reduction of mitral regurgitation using the Coapsys device: a novel ex vivo method using excised recipients’ hearts. ASAIO J 51(1):82–84

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

Drs. Atluri and Acker have no financial ties or conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Acker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atluri, P., Acker, M.A. Diastolic ventricular support with cardiac support devices: an alternative approach to prevent adverse ventricular remodeling. Heart Fail Rev 18, 55–63 (2013). https://doi.org/10.1007/s10741-012-9312-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-012-9312-4

Keywords

Navigation