Skip to main content
Log in

Adaptations in autonomic function during exercise training in heart failure

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Although neurohumoral excitation is the hallmark of heart failure (HF), the mechanisms underlying this alteration are not entirely known. Abnormalities in several systems contribute to neurohumoral excitation in HF, including arterial and cardiopulmonary baroreceptors, central and peripheral chemoreceptors, cardiac chemoreceptors, and central nervous system abnormalities. Exercise intolerance is characteristic of chronic HF, and growing evidence strongly suggests that exercise limitation in patients with chronic HF is not due to elevated filling pressures or inadequate cardiac output during exercise, but instead due to skeletal myopathy. Several lines of evidence suggest that sympathetic excitation contributes to the skeletal myopathy of HF, since sympathetic activity mediates vasoconstriction at rest and during exercise likely restrains muscle blood flow, arteriolar dilatation, and capillary recruitment, leading to underperfused areas of working muscle, and areas of muscle ischemia, release of reactive oxygen species (ROS), and inflammation. Although controversial, either unmyelinated, metabolite-sensitive afferent fibers, and/or myelinated, mechanosensitive afferent fibers in skeletal muscle underlie the exaggerated sympathetic activity in HF. Exercise training has emerged as a unique non-pharmacological strategy for the treatment of HF. Regular exercise improves functional capacity and quality of life, and perhaps prognosis in chronic HF patients. Recent studies have provided convincing evidence that these benefits in chronic HF patients are mediated by significant reduction in central sympathetic outflow as a consequence of improvement in arterial and chemoreflex controls, and correction of central nervous system abnormalities, and increase in peripheral blood flow with reduction in cytokines and increase in mass muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. American Heart Association:2001 Heart and Stroke Statistical Update. Dallas. American Heart Association 2000:19–21,31

  2. Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GD, Simon AB, Rector T (1984) Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 311:819–823

    Article  PubMed  CAS  Google Scholar 

  3. Esler M, Kaye D (2000) Measurement of sympathetic nervous system activity in heart failure: the role of norepinephrine kinetics. Heart Fail Rev 5:17–25

    Article  PubMed  CAS  Google Scholar 

  4. Negrao CE, Rondon MU, Tinucci T, Alves MJ, Roveda F, Braga AM, Reis SF, Nastari L, Barretto AC, Krieger EM, Middlekauff HR (2001) Abnormal neurovascular control during exercises is linked to heart failure severity. A J Physiol 280:H1286–1292

    CAS  Google Scholar 

  5. Brilla CG, Matsubara LS, Weber KT (1993) Anti-aldosterone treatment and the prevention of myocardial fibrosis in primary and sacondary hyperaldosteronism. J Mol Cell Cardiol 25:563–575

    Article  PubMed  CAS  Google Scholar 

  6. Weber KT, Brilla CG (1991) Pathological hypertrophy and cardiac interstitium: fibrosis and renin-angiotensin-aldosterone system. Circulation 83:1849–1865

    PubMed  CAS  Google Scholar 

  7. Eckberg DL, Drabinsky M, Braunwald E (1971) Defective cardiac parasympathetic control in patients with heart disease. N Engl Med 285:877–883

    Article  CAS  Google Scholar 

  8. Ferguson DW, Berg WJ, Roach PJ, Oren RM, Mark AL (1992) Effects of heart failure on baroreflex control of sympathetic neural activity. Am J Cardiol 69:523–531

    Article  PubMed  CAS  Google Scholar 

  9. Wang W, Chen JS, Zucher IH (1991) Carotid sinus baroreceptor sensitivity in experimental heart failure. Circ Res 68:1294–1301

    PubMed  CAS  Google Scholar 

  10. Al-Hesayen A, Parker JD (2004) Impaired baroreceptor control of renal sympathetic activity in human chronic heart failure. Circulation 109:2862–2865

    Article  PubMed  CAS  Google Scholar 

  11. Middlekauff HR, Nitzsche EU, Hamilton MA, Schelbert HR, Fonarow GC, Morigushi JD, Hage A, Saleh S, Gibbs GG (1995) Evidence for preserved cardiopulmonary baroreflex control of renal cortical blood flow in humans with advanced heart failure A positron emission tomography study Circulation 92:395–401

    PubMed  CAS  Google Scholar 

  12. Dibner-Dunlap ME, Smith ML, Kinugawa T, Thames MD (1996) Enalaprilat augments arterial and cardiopulmonary baroreflex control of sympathetic nerve activity in patients with heart failure. J Am Coll Cardiol 27:358–364

    Article  PubMed  CAS  Google Scholar 

  13. Middlekauff HR, Hamilton MA, Stevenson LW, Mark AL (1994) Independent control of skin and muscle sympathetic nerve activity in patients with heart failure. Circulation 90:1794–1798

    PubMed  CAS  Google Scholar 

  14. Chua TP, Clark AL, Amadi AA, Coats AJS (1996) The relationship between chemosensitivity and the ventilatory response to exercise in chronic heart failure. J AM Coll Cardiol 27:650–657

    Article  PubMed  CAS  Google Scholar 

  15. Chugh SS, Chua TP, Coats AJS (1996) Peripheral chemoreflex in chronic heart failure: friend and foe. Am Heart J 132:900–904

    Article  PubMed  CAS  Google Scholar 

  16. Narkiewicz K, Somers VK (1999) Interactive effect of heart rate and muscle sympathetic nerve activity on blood pressure. Circulation 100:2514–2518

    PubMed  CAS  Google Scholar 

  17. Di Vanna A, Braga AM, Laterza MC, Ueno LM, Rondon MU, Barretto AC, Middlekauff HF, Negrao CE (2007) Blunted muscle vasodilatation during chemoreceptor stimulation in patients with heart failure. Am J Physiol Heart Circ Physiol 293:H846–852

    Article  PubMed  CAS  Google Scholar 

  18. Ponikowski P, Chua TP, Piepoli M, Ondusova D, Webb-Peploe K, Harrington D, Anker SD, Volterrani M, Colombo R, Mazzuero G, Giordano A, Coats AJS (1997) Augmented peripheral chemosensitivity as a potential input to baroreflex impairment and autonomic imbalance in chronic heart failure. Circulation 96:2586–2594

    PubMed  CAS  Google Scholar 

  19. Xia XH, Sun SY, Cornish KG, Zeng YC, Wang W, Schultz HD (2000) Effect of carotid body denervation on Cheyne-Stokes respiration and baroreflex function in heart failure. Circulation 102:700–701 (Abstract)

    Google Scholar 

  20. Malliani A, Montano N (2002) Emerging excitatory role of cardiovascular sympathetic afferents in pathophysiological conditions. Hypertension 39:63–68

    Article  PubMed  CAS  Google Scholar 

  21. Dibner-Dunlap ME, Kinugawa T, Thames MD (1993) Activation of cardiac sympathetic afferents: effects of exogenous adenosine and adenosine analogues. Am J Physiol 265:H395–400

    PubMed  CAS  Google Scholar 

  22. Felder RB, Thames MD (1982) Responses to activation of cardiac sympathetic afferents with epicardial bradykinin. Am J Physiol 242:H148–153

    PubMed  CAS  Google Scholar 

  23. Gao L, Zhu Z, Zucker IH, Wang W (2004) Cardiac sympathetic afferent stimulation impairs baroreflex control of renal sympathetic nerve activity in rats. Am J Physiol Heart Circ Physiol 286:H1706–1711

    Article  PubMed  CAS  Google Scholar 

  24. Zucker IH (2002) Brain Angiotensin II New Insights Into its Role in Sympathetic Regulation. Circulation Res 90:503–505

    Article  PubMed  CAS  Google Scholar 

  25. Zhu GC, Patel KP, Zucker IH, Wang W (2002) Microinjection of ANG II into paraventricular nucleus enhances cardiac sympathetic afferent reflex in rats. Am J Physiol Heart Circ Physiol 282:H2039–2045

    PubMed  CAS  Google Scholar 

  26. Liu JL, Murakami H, Zucker IH (1998) Angiotensin II-nitric oxide interaction on sympathetic outflow in conscious rabbits. Circ Res 82:496–502

    PubMed  CAS  Google Scholar 

  27. Wilson JR, Rayos G, Yeoh TK, Gothard P, Bak K (1995) Dissociation between exertional symptoms and circulatory function in patients with HF. Circulation 92:47–53

    PubMed  CAS  Google Scholar 

  28. Wilson JR, Rayos G, Yeoh TK, Gothard P (1995) Dissociation between peak exercise oxygen consumption and hemodynamic dysfunction in potential heart transplant candidates. J Am Coll Cardiol 26:429–435

    Article  PubMed  CAS  Google Scholar 

  29. Cohn JN, Johnson GR, Shabetai R, Loeb H, Tristani F, Rector T, Smith R, Fletcher R, for the V-HeFT VA Cooperative Studies Group (1993) Ejection fraction, peak exercise oxygen consumption, cardiothoracic ratio, ventricular arrhythmias, and plasma norepinephrine as determinants of prognosis in HF. Circulation 87(suppl VI):5–16

    Google Scholar 

  30. Drexler H, Banhardt U, Meinertz T, Wollschlager H, Lehmann M, Just H (1989) Contrasting peripheral short-term and long-term effects of converting enzyme inhibition in patients with congestive heart failure: A double-blind, placebo-controlled trial. Circulation 79:491–502

    PubMed  CAS  Google Scholar 

  31. Clark AL, Poole-Wilson PA, Coats AJS (1996) Exercise limitation in chronic HF: Central role of the periphery. J Am Coll Cardiol 28:1092–1102

    Article  PubMed  CAS  Google Scholar 

  32. McKelvie RS, Teo KK, McCartney N, Humen D, Montague T, Yusuf S (1995) Effects of exercise training in patients with congestive HF: A critical review. J Am Coll Cardiol 25:789–796

    Article  PubMed  CAS  Google Scholar 

  33. Sullivan MJ, Green HJ, Cobb FR (1991) Altered skeletal muscle metabolic response to exercise in chronic HF: relation to skeletal muscle aerobic enzyme activity. Circulation 84:1597–1607

    PubMed  CAS  Google Scholar 

  34. Ventura-Clapier R, De Sousa E, Veksler V (2002) Metabolic myopathy in HF. News Physiol Sci 17:191–196

    PubMed  Google Scholar 

  35. Lunde PK, Sjaastad I, Schiotz Thorud HM, Sejersted OM (2001) Skeletal muscle disorders in HF. Acta Physiol Scand 171:277–294

    Article  PubMed  CAS  Google Scholar 

  36. Poole-Wilson PA, Ferraro R (1996) Role of skeletal muscle in the syndrome of chronic HF. J Mol Cell Cardiol 28:2275–2285

    Article  PubMed  CAS  Google Scholar 

  37. Harrington D, Anker SD, Chua TP, Webb-Peploe M, Ponikowski PP, Poole-Wilson PA, Coats AJS (1997) Skeletal muscle function and its relation to exercise tolerance in chronic HF. J Am Coll Cardiol 30:1758–1764

    Article  PubMed  CAS  Google Scholar 

  38. Massie BM, Conway M, Rajagopalan B, Yonge R, Frostick S, Ledingham J, Sleight P, Radda G (1988) Skeletal muscle metabolism during exercise under ischemic conditions in congestive HF: evidence for abnormalities unrelated to blood flow. Circulation 78:320–326

    PubMed  CAS  Google Scholar 

  39. Drexler H, Riede U, Munzel T, Konig H, Funke E, Just H (1992) Alterations of skeletal muscle in chronic HF. Circulation 85:1751–1759

    PubMed  CAS  Google Scholar 

  40. Wilson JR, Mancini DM, Dunkman WB (1993) Exertional fatigue due to skeletal muscle dysfunction in patients with HF. Circulation 87:470–475

    PubMed  CAS  Google Scholar 

  41. Mancini DM, Wilson JR, Bolinger L, Li H, Kendrick K, Chance B, Leigh JS (1994) In vivo magnetic resonance spectroscopy measurement of deoxymyoglobin during exercise in patients with HF demonstration of abnormal muscle metabolism despite adequate oxygenation. Circulation 90:500–508

    PubMed  CAS  Google Scholar 

  42. Vescovo G, Zennaro R, Sandri M, Carraro U, Leprotti C, Ceconi C, Ambrosio GB, Libera LD (1998) Apoptosis of skeletal muscle myofibers and interstitial cells in experimental HF. J Moll Cell Cardiol 30:2449–2459

    Article  CAS  Google Scholar 

  43. Adams V, Jiang H, Yu J, Mobius-Winkler S, Fiehn E, Linke A, Weigl C, Schuler G, Hambrecht R (1999) Apoptosis in skeletal myocytes of patients with chronic HF is associated with exercise intolerance. J Am Coll Cardiol 33:959–965

    Article  PubMed  CAS  Google Scholar 

  44. Sullivan MJ, Green HJ, Cobb FR (1990) Skeletal muscle biochemistry and histology in ambulatory patients with long-term HF. Circulation 81:518–527

    PubMed  CAS  Google Scholar 

  45. Lang CC, Rayos GH, Chomsky DB, Wood AJJ, Wilson JR (1997) Effect of sympathoinhibition on exercise performance in patients with HF. Circulation 96:238–245

    PubMed  CAS  Google Scholar 

  46. Shoemaker JK, Naylor HL, Hogemen CS, Sinoway LI (1999) Blood flow dynamics in HF. Circulation 99:3002–3008

    PubMed  CAS  Google Scholar 

  47. Shoemaker JK, Pandey P, Herr MD, Silber DH, Yang QX, Smith MB, Gray K, Sinoway LI (1997) Augmented sympathetic tone alters muscle metabolism with exercise: lack of evidence for functional sympatholysis. J Appl Physiol 82:1932–1938

    PubMed  CAS  Google Scholar 

  48. Joyner MJ, Nauss LA, Warner MA, Warner DO (1992) Sympathetic modulation of blood flow and O2 uptake in rhythmically contracting human forearm muscles. Am J Physiol 263:H1078–1083

    PubMed  CAS  Google Scholar 

  49. Baeuerle PA, Baltimore D (1996) NF-kappa B: ten years after. Cell. 87(1):13–20

    Article  PubMed  CAS  Google Scholar 

  50. Reid MB, Li YP (2001) Cytokines and oxidative signaling in skeletal muscle. Acta Physiol Scand 171:225–32

    Article  PubMed  CAS  Google Scholar 

  51. Libera LD, Sabbadini R, Renken C, Ravara B, Sandri M, Betto R, Angelini A, Vescovo G (2001) Apoptosis in the skeletal muscle of rats with HF is associated with increased serum levels of TNF-alpha and sphingosine. J Mol Cell Cardiol 33:1871–1878

    Article  PubMed  CAS  Google Scholar 

  52. Gielen S, Adams V, Mobius-Winkler S, Linke A, Erbs S, Yu J, Kempf W, Schubert A, Schuler G, Hambrecht R (2003) Anti-inflammatory effects of exercise training in the skeletal muscle of patients with chronic HF. J Am Coll Cardiol 42:861–868

    Article  PubMed  CAS  Google Scholar 

  53. Larsen AI, Lindal S, Aukrust P, Toft I, Aarsland T. Dickstein K (2002) Effect of exercise training on skeletal muscle fibre characteristics in men with chronic HF. Correlation between skeletal muscle alterations, cytokines and exercise capacity. Int J Cardiol 83:25–32

    Article  PubMed  Google Scholar 

  54. Middlekauff HR, Sinoway LI (2007) Increased mechanoreceptor stimulation explains the exaggerated exercise pressor reflex seen in heart failure. Appl Physiol 102:492–494

    Article  Google Scholar 

  55. Zelis R, Mason DT, Braunwald E (1969) Partition of blood flow to the cutaneous and muscular beds of the forearm at rest and during leg exercise in normal subjects and in patients with heart failure. Circ Res 24:799–806

    PubMed  CAS  Google Scholar 

  56. Zelis R, Longhurst J, Capone RJ, Mason DT (1974) A comparison of regional blood flow and oxygen utilization during dynamic forearm exercise in normal subjects and patients with congestive heart failure. Circulation 50:137–43

    PubMed  CAS  Google Scholar 

  57. Kubo SH, Rector TS, Bank AJ, Willians RE, Heifetz SM (1991) Endothelium-dependent vasodilatation is attenuated in patients with heart failure. Circulation 84:1589–1596

    PubMed  CAS  Google Scholar 

  58. Negrao CE, Hamilton MA, Fonarow GC, Hage A, Moriguchi JD, Middlekauff HF (2000) Impaired endothelium-mediated vasodilation is not the principal cause of vasoconstriction in heart failure. Am J Physiol Heart Circ Physiol 278:H168–174

    PubMed  CAS  Google Scholar 

  59. Santos AC, Alves MJ, Rondon MU, Barretto AC, Middlekauff HR, Negrao CE (2005) Sympathetic activation restrains endothelium-mediated muscle vasodilatation in heart failure patients. Am J Physiol Heart Circ Physiol 289:H593–599

    Article  PubMed  CAS  Google Scholar 

  60. Piña IL, Apstein CS, Balady GJ, Belardinelli R, Chaitman BR, Duscha BD, Fletcher, Fleg JL, Myers JN, Sullivan MJ, American Heart Association Committee on Exercise, Rehabilitation, and Prevention (2003) Exercise and heart failure: a statement from the American Heart Association Committee on exercise, rehabilitation, and prevention. Circulation 107:1210–1225

    Article  PubMed  Google Scholar 

  61. Roveda F, Middlekauff HR, Rondon MU, Reis SF, Souza M, Nastari L, Barretto AC, Krieger EM, Negrao CE (2003) The effects of exercise training on sympathetic neural activation in advanced heart failure: a randomized controlled trial. J Am Coll Cardiol 42:854–860

    Article  PubMed  Google Scholar 

  62. de Mello Franco FG, Santos AC, Rondon MU, Trombetta IC, Strunz C, Braga AM, Middlekauff HR, Negão CE, Pereira Barreto AC (2006) Effects of home-based exercise training on neurovascular control in patients with heart failure. Eur J Heart Fail 8:851–855

    Article  PubMed  Google Scholar 

  63. Fraga R, Franco FG, Roveda F, De Mattos LN, Braga AM, Rondon MU, Rotta DR, Barretto AC, Middlekauff HR, Negrao CE (2007) Exercise training reduces sympathetic nerve activity in heart failure patients treated with carvedilol. Eur J Heart Fail 9:630–636

    Article  PubMed  CAS  Google Scholar 

  64. Coats AJ, Adamopoulos S, Radaelli A, MacCance A, Meyer TE, Bernardi L, Solda PL, Davey P, Ormerod O, Forfar C (1992) Controlled trial of physical training in chronic heart failure. Exercise performance, hemodynamics, ventilation, and autonomic function. Circulation 85:2119–2131

    PubMed  CAS  Google Scholar 

  65. Radaelli A, Coats AJ, Leuzzi S, Piepoli M, Meyer TE, Calciati A, Finardi G, Sleight P (1996) Physical training enhances sympathetic and parasympathetic control of heart rate and peripheral vessels in chronic heart failure. Clin Sci (Lond) 91:92–94

    Google Scholar 

  66. Kiilavuori K, Toivonen L, Näveri H, Leionen H (1995) Reversal of autonomic derangements by physical training in chronic heart failure assessed by heart rate variability. Eur Heart J 16:490–495

    PubMed  CAS  Google Scholar 

  67. Toepfer M, Meyer K, Maier P, Dambacher M, Theinsen K, Roskamm H, Frey AW (1996) Influence of exercise training and restriction of activity on autonomic balance in patients with severe congestive heart failure. Clin Sci (Lond). 91[Suppl:116]

  68. Pliquett RU, Kornish KG, Patel KP, Shultz HD, Zucker IH (2003) Amelioration of depressed cardiopulmonary reflex control of sympathetic nerve activity by short-term exercise training in male rabbits with heart failure. J Appl Physiol 95:1883–1888

    PubMed  CAS  Google Scholar 

  69. Liu JL, Irvine S, Reid IA, Patel KP, Zucker IH (2000) Chronic exercise reduces sympathetic nerve activity in rabbits with pacing-induced heart failure: a role for angiotensin II. Circulation 102:1854–1862

    PubMed  CAS  Google Scholar 

  70. Rondon E, Brasileiro-Santos MS, Moreira ED, Rondon MU, Mattos KC, Coelho MA, Silva GJ, Brum PC, Fiorino P, Irigoyen MC, Krieger EM, Middlekauff HR, Negrao CE (2006) Exercise training improves aortic depressor nerve sensitivity in rats with ischemia-induced heart failure. Am J Physiol Heart Circ Physiol 291:H2801–2806

    Article  PubMed  CAS  Google Scholar 

  71. Tyni-Lenne R, Dencker K, Gordon A, Jansson E , Sylven C (2001) Comprehensive local muscle training increases aerobic working capacity and quality of life and decreases neurohormonal activation in patients with chronic heart failure. Eur J Heart Fail 3:47–52

    Article  PubMed  CAS  Google Scholar 

  72. Liu JL, Kulakofsky J, Zucker IH (2002) Exercise training enhances baroreflex control of heart rate by a vagal mechanism in rabbits with heart failure. J Appl Physiol 92:2403–2408

    PubMed  Google Scholar 

  73. Schultz H, Sun SY (2000) Chemoreflex function in heart failure. Heart Fail Rev 5:45–56

    Article  PubMed  CAS  Google Scholar 

  74. Zucker IH, Patel KP, Schultz HD, Li YF, Wang W, Pliquett RU (2004) Exercise training and sympathetic regulation in experimental heart failure. Exerc Sport Sci Rev 32:107–111

    Article  PubMed  Google Scholar 

  75. Zheng H, Li YF, Kornish KG, Zucker IH, Patel KP (2005) Exercise training improves endogenous nitric oxide mechanisms within the paraventricular nucleus in rats with heart failure. Am J Physiol Heart Circ Physiol 288:H2332–2341

    Article  PubMed  CAS  Google Scholar 

  76. Mueller PJ (2007) Exercise training attenuates increases in lumbar sympathetic nerve activity produced by stimulation of the rostral ventrolateral medulla. J Appl Physiol 102:803–813

    Article  PubMed  CAS  Google Scholar 

  77. Brouwer J, van Veldhuisen DJ, Man in ‘t Veld AJ, Haaksma J, Dijk WA, Visser KR, Boomsma F, Dulselman PH (1996) Prognostic value of heart rate variability during long-term follow-up in patients with mild to moderate heart failure. The Dutch Ibopamine Multicenter Trial Study Group. J Am Coll Cardiol 28:1183–1189

    Article  PubMed  CAS  Google Scholar 

  78. Kinugawa T, Ogino K, Osaki S, Kato M, Igawa O, Hisatome I, Fujita M, Shigemasa C (2002) Prognostic significance of exercise plasma noradrenaline levels for cardiac death in patients with mild heart failure. Circ J 66:261–266

    Article  PubMed  Google Scholar 

  79. La Rovere MT, Pinna GD, Maestri R, Mortara A, Capomolla S, Febo O, Ferrari R, Franchini M, Gnemmi M, Opasich C, Riccardi PG, Travessi E, Cobelli F (2003) Short-term heart rate variability strongly predicts sudden cardiac death in chronic heart failure patients. Circulation 107:565–570

    Article  PubMed  Google Scholar 

  80. Santos AC, Munhoz RT, Rondon MU, Franco FGM, Trombetta IC, Roveda F, Mattos LD, Braga AM, Middlekauff HR, Negrao CE (2004) Increased muscle sympathetic nerve activity predicts mortality in heart failure patients. Circulation 110:84

    Article  CAS  Google Scholar 

  81. Belardinelli R, Georgiou D, Cianci G, Purcaro A (1999) Randomized, controlled trial of long-term moderate exercise training in chronic heart failure: effects on functional capacity, quality of life, and clinical outcome. Circulation 99:1173–1182

    PubMed  CAS  Google Scholar 

  82. Whellan DJ, O’Connor CM, Lee KL, Keteyian SJ, Cooper LS, Ellis SJ, Leifer ES, Kraus WE, Kitzman DW, Blumenthal JA, Rendall DS, Houston-Miller N, Fleg JL, Schulman KA, Pina IL (2007) Trial investigators. Heart failure and a controlled trial investigating outcomes of exercise training (HF-ACTION): design and rationale. Am Heart J 153:201–211

    Article  PubMed  Google Scholar 

  83. Kostis JB, Rosen RC, Cosgrove NM, Shindler DM, Wilson AC (1994) Nonpharmacologic therapy improves functional and emotional status in congestive heart failure. Chest 106:996–1001

    Article  PubMed  CAS  Google Scholar 

  84. Kavanagh T, Myers M, Baigrie R, Mertens D, Sawyer P, Shepard RJ (1996) Quality of life and cardiorespiratory function in chronic heart failure: effects of 12 months aerobic training. Heart 76:42–49

    Article  PubMed  CAS  Google Scholar 

  85. Willenheimer R, Erhardt L, Cline C, Rydberg E, Israelsson B (1998) Exercise training in heart failure improves quality of life and exercise capacity. Eur Heart J 19:774–781

    Article  PubMed  CAS  Google Scholar 

  86. Oka RK, De Marco T, Haskell WL, Botvinick E, Dae MW, Bolen K, Chatterjee K (2000) Impact of a home-based walking and resistance training program on quality of life in patients with heart failure. Am J Cardiol 85:365–369

    Article  PubMed  CAS  Google Scholar 

  87. Tyni-Lenne R, Gordon A, Jansson E, Bermann G, Sylven C (1997) Skeletal muscle endurance training improves peripheral oxidative capacity, exercise tolerance, and health-related quality of life in women with chronic congestive heart failure secondary to either ischemic cardiomyopathy or idiopathic dilated cardiomyopathy. Am J Cardiol 80:1025–1029

    Article  PubMed  CAS  Google Scholar 

  88. Rector TS, Cohn JN (1992) Assessment of patient outcome with the Minnesota Living with Heart Failure questionnaire: reliability and validity during a randomized, double-blind, placebo-controlled trial of pimobendan Pimobendan Multicenter Research Group. Am Heart J. 124:1017–1025

    Article  PubMed  CAS  Google Scholar 

  89. Kiilavuori K, Sovijarvi A, Näveri H, Ikonen T. Leinonen H (1996) Effect of physical training on exercise capacity and gas exchange in patients with chronic heart failure. Chest 110:985–991

    PubMed  CAS  Google Scholar 

  90. De Mattos LD, Gardenghi G, Rondon MU, Soufen HN, Tirone AP, Barretto AC, Brum PC, Middlekauff HR, Negrao CE (2004) Impact of 6 months of therapy with carvedilol on muscle sympathetic nerve activity in heart failure patients. J Card Fail 10:496–502

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Carlos E Negrao has been supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP # 2005/59740-7) and Conselho Nacional de Pesquisa (CNPq # 304304/2004-2), Brazil, and Dra. Holly R Middlekauff by the National Institutes of Health (Grant RO1 HL084525), USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Eduardo Negrao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Negrao, C.E., Middlekauff, H.R. Adaptations in autonomic function during exercise training in heart failure. Heart Fail Rev 13, 51–60 (2008). https://doi.org/10.1007/s10741-007-9057-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-007-9057-7

Keywords

Navigation