Skip to main content

Advertisement

Log in

Decreased interaction between ZO-1 and occludin is involved in alteration of tight junctions in transplanted epiphora submandibular glands

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Tight junctions (TJs) in salivary epithelium play an important role in regulating saliva secretion. Autologous transplantation of submandibular glands (SMGs) is an effective method to treat severe dry eye syndrome. However, epiphora occurs in some patients 6 months after transplantation. We previously found that the acinar TJs are enlarged in rabbit SMGs after long-term transplantation, but the exact TJ components involved in the epiphora are still unknown. Here, we found that the mRNA and protein expression of ZO-1 and occludin were increased in the transplanted SMGs obtained from epiphora patients, while other TJs were unchanged. The intensity of ZO-1 and occludin at the apicolateral membranes as well as occludin in the cytoplasm were increased in epiphora SMGs, but the interaction between ZO-1 and occludin was decreased as evidenced by both co-immunoprecipitation assay and co-immunofluorescence staining. Mechanically, the expression of casein kinase 2α (CK2α) and CK2β, which was reported to affect occludin modification and the interaction of occludin with ZO-1 in previous literatures, were increased in epiphora glands. Moreover, activation of muscarinic acetylcholine receptor (mAChR) by carbachol directly decreased the interaction between ZO-1 and occludin and increased the acinar TJ width in the freshly isolated human SMGs, whereas these effects were abolished by pretreatment with CK2 inhibitor. Taken together, our findings suggest that decreased interaction between ZO-1 and occludin might contribute to the epiphora occurred in the transplanted SMGs, and mAChR together with the intracellular molecule CK2 might be responsible for the alteration of TJs in epiphora glands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe A, Takano K, Kojima T, Nomura K, Kakuki T, Kaneko Y, Yamamoto M, Takahashi H, Himi T (2016) Interferon-gamma increased epithelial barrier function via upregulating claudin-7 expression in human submandibular gland duct epithelium. J Mol Histol 47:353–363. doi:10.1007/s10735-016-9667-2

    Article  CAS  PubMed  Google Scholar 

  • Baker OJ (2016) Current trends in salivary gland tight junctions. Tissue Barriers 4:e1162348. doi:10.1080/21688370.2016.1162348

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker OJ, Camden JM, Redman RS, Jones JE, Seye CI, Erb L, Weisman GA (2008) Proinflammatory cytokines tumor necrosis factor-alpha and interferon-gamma alter tight junction structure and function in the rat parotid gland Par-C10 cell line. Am J Physiol Cell Physiol 295:C1191–C1201. doi:10.1152/ajpcell.00144.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cong X, Zhang Y, Shi L, Yang NY, Ding C, Li J, Ding QW, Su YC, Xiang RL, Wu LL, Yu GY (2012) Activation of transient receptor potential vanilloid subtype 1 increases expression and permeability of tight junction in normal and hyposecretory submandibular gland. Lab Invest 92:753–768. doi:10.1038/labinvest.2012.12

    Article  CAS  PubMed  Google Scholar 

  • Cong X, Zhang Y, Yang NY, Li J, Ding C, Ding QW, Su YC, Mei M, Guo XH, Wu LL, Yu GY (2013) Occludin is required for TRPV1-modulated paracellular permeability in the submandibular gland. J Cell Sci 126:1109–1121. doi:10.1242/jcs.111781

    Article  CAS  PubMed  Google Scholar 

  • Cong X, Zhang Y, Li J, Mei M, Ding C, Xiang RL, Zhang LW, Wang Y, Wu LL, Yu GY (2015) Claudin-4 is required for modulation of paracellular permeability by muscarinic acetylcholine receptor in epithelial cells. J Cell Sci 128:2271–2286. doi:10.1242/jcs.165878

    Article  CAS  PubMed  Google Scholar 

  • Coyne CB, Vanhook MK, Gambling TM, Carson JL, Boucher RC, Johnson LG (2002) Regulation of airway tight junctions by proinflammatory cytokines. Mol Biol Cell 13:3218–3234. doi:10.1091/mbc.E02-03-0134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coyne CB, Shen L, Turner JR, Bergelson JM (2007) Coxsackievirus entry across epithelial tight junctions requires occludin and the small GTPases Rab34 and Rab5. Cell Host Microbe 2:181–192. doi:10.1016/j.chom.2007.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding C, Li L, Su YC, Xiang RL, Cong X, Yu HK, Li SL, Wu LL, Yu GY (2013) Adiponectin increases secretion of rat submandibular gland via adiponectin receptors-mediated AMPK signaling. PLoS ONE 8:e63878. doi:10.1371/journal.pone.0063878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding C, Cong X, Zhang Y, Yang NY, Li SL, Wu LL, Yu GY (2014) Hypersensitive mAChRs are involved in the epiphora of transplanted glands. J Dent Res 93:306–312. doi:10.1177/0022034513519107

    Article  CAS  PubMed  Google Scholar 

  • Dorfel MJ, Huber O (2012) Modulation of tight junction structure and function by kinases and phosphatases targeting occludin. J Biomed Biotechnol 2012:807356. doi:10.1155/2012/807356

    Article  PubMed  PubMed Central  Google Scholar 

  • Dorfel MJ, Westphal JK, Bellmann C, Krug SM, Cording J, Mittag S, Tauber R, Fromm M, Blasig IE, Huber O (2013) CK2-dependent phosphorylation of occludin regulates the interaction with ZO-proteins and tight junction integrity. Cell Commun Signal 11:40. doi:10.1186/1478-811X-11-40

    Article  PubMed  PubMed Central  Google Scholar 

  • Elias BC, Suzuki T, Seth A, Giorgianni F, Kale G, Shen L, Turner JR, Naren A, Desiderio DM, Rao R (2009) Phosphorylation of Tyr-398 and Tyr-402 in occludin prevents its interaction with ZO-1 and destabilizes its assembly at the tight junctions. J Biol Chem 284:1559–1569. doi:10.1074/jbc.M804783200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ewert P, Aguilera S, Alliende C, Kwon YJ, Albornoz A, Molina C, Urzúa U, Quest AF, Olea N, Pérez P, Castro I, Barrera MJ, Romo R, Hermoso M, Leyton C, González MJ (2010) Disruption of tight junction structure in salivary glands from Sjogren’s syndrome patients is linked to proinflammatory cytokine exposure. Arthritis Rheum 62:1280–1289. doi:10.1002/art.27362

    Article  CAS  PubMed  Google Scholar 

  • Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM (1998) The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem 273:29745–29753

    Article  CAS  PubMed  Google Scholar 

  • Furuse M, Itoh M, Hirase T, Nagafuchi A, Yonemura S, Tsukita S (1994) Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol 127:1617–1626

    Article  CAS  PubMed  Google Scholar 

  • Geerling G, Sieg P, Bastian GO, Laqua H (1998) Transplantation of the autologous submandibular gland for most severe cases of keratoconjunctivitis sicca. Ophthalmology 105:327–335

    Article  CAS  PubMed  Google Scholar 

  • Geerling G, Garrett JR, Paterson KL, Sieg P, Collin JR, Carpenter GH, Hakim SG, Lauer I, Proctor GB (2008) Innervation and secretory function of transplanted human submandibular salivary glands. Transplantation 85:135–140. doi:10.1097/01.tp.0000296060.39823.a4

    Article  PubMed  Google Scholar 

  • Gonzalez-Mariscal L, Betanzos A, Nava P, Jaramillo BE (2003) Tight junction proteins. Prog Biophys Mol Biol 81:1–44

    Article  CAS  PubMed  Google Scholar 

  • Jacob AM, Gaver DP 3rd (2012) Atelectrauma disrupts pulmonary epithelial barrier integrity and alters the distribution of tight junction proteins ZO-1 and claudin 4. J Appl Physiol 113:1377–1387. doi:10.1152/japplphysiol.01432.2011

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawedia JD, Nieman ML, Boivin GP, Melvin JE, Kikuchi K, Hand AR, Lorenz JN, Menon AG (2007) Interaction between transcellular and paracellular water transport pathways through Aquaporin 5 and the tight junction complex. Proc Natl Acad Sci USA 104:3621–3626. doi:10.1073/pnas.0608384104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Yang W, Shen L, Turner JR, Coyne CB, Wang T (2009) Tight junction proteins claudin-1 and occludin control hepatitis C virus entry and are downregulated during infection to prevent superinfection. J Virol 83:2011–2014. doi:10.1128/JVI.01888-08

    Article  CAS  PubMed  Google Scholar 

  • Mei M, Xiang RL, Cong X, Zhang Y, Li J, Yi X, Park K, Han JY, Wu LL, Yu GY (2015) Claudin-3 is required for modulation of paracellular permeability by TNF-α through ERK1/2/slug signaling axis in submandibular gland. Cell Signal 27:1915–1927. doi:10.1016/j.cellsig.2015.07.002

    Article  CAS  PubMed  Google Scholar 

  • Nighot PK, Blikslager AT (2010) ClC-2 regulates mucosal barrier function associated with structural changes to the villus and epithelial tight junction. Am J Physiol Gastrointest Liver Physiol 299:G449–G456. doi:10.1152/ajpgi.00520.2009

    Article  CAS  PubMed  Google Scholar 

  • Peerapen P, Thongboonkerd V (2011) Effects of calcium oxalate monohydrate crystals on expression and function of tight junction of renal tubular epithelial cells. Lab Invest 91:97–105. doi:10.1038/labinvest.2010.167

    Article  CAS  PubMed  Google Scholar 

  • Raleigh DR, Boe DM, Yu D, Weber CR, Marchiando AM, Bradford EM, Wang Y, Wu L, Schneeberger EE, Shen L, Turner JR (2011) Occludin S408 phosphorylation regulates tight junction protein interactions and barrier function. J Cell Biol 193:565–582. doi:10.1083/jcb.201010065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao R (2009) Occludin phosphorylation in regulation of epithelial tight junctions. Ann N Y Acad Sci 1165:62–68. doi:10.1111/j.1749-6632.2009.04054.x

    Article  CAS  PubMed  Google Scholar 

  • Roxas JL, Koutsouris A, Bellmeyer A, Tesfay S, Royan S, Falzari K, Harris A, Cheng H, Rhee KJ, Hecht G (2010) Enterohemorrhagic E. coli alters murine intestinal epithelial tight junction protein expression and barrier function in a Shiga toxin independent manner. Lab Invest 90:1152–1168. doi:10.1038/labinvest.2010.91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt A, Utepbergenov DI, Krause G, Blasig IE (2001) Use of surface plasmon resonance for real-time analysis of the interaction of ZO-1 and occludin. Biochem Biophys Res Commun 288:1194–1199. doi:10.1006/bbrc.2001.5914

    Article  CAS  PubMed  Google Scholar 

  • Schmidt A, Utepbergenov DI, Mueller SL, Beyermann M, Schneider-Mergener J, Krause G, Blasig IE (2004) Occludin binds to the SH3-hinge-GuK unit of zonula occludens protein 1: potential mechanism of tight junction regulation. Cell Mol Life Sci 61:1354–1365. doi:10.1007/s00018-004-4010-6

    Article  CAS  PubMed  Google Scholar 

  • Schreibelt G, Kooij G, Reijerkerk A, van Doorn R, Gringhuis SI, van der Pol S, Weksler BB, Romero IA, Couraud PO, Piontek J, Blasig IE, Dijkstra CD, Ronken E, de Vries HE (2007) Reactive oxygen species alter brain endothelial tight junction dynamics via RhoA, PI3 kinase, and PKB signaling. FASEB J 21:3666–3676. doi:10.1096/fj.07-8329com

    Article  CAS  PubMed  Google Scholar 

  • Sieg P, Geerling G, Kosmehl H, Lauer I, Warnecke K, von Domarus H (2000) Microvascular submandibular gland transfer for severe cases of keratoconjunctivitis sicca. Plast Reconstr Surg 106:554–560 (discussion 561–562)

    Article  CAS  PubMed  Google Scholar 

  • Smales C, Ellis M, Baumber R, Hussain N, Desmond H, Staddon JM (2003) Occludin phosphorylation: identification of an occludin kinase in brain and cell extracts as CK2. FEBS Lett 545:161–166

    Article  CAS  PubMed  Google Scholar 

  • Su JZ, Cai ZG, Yu GY (2015) Microvascular autologous submandibular gland transplantation in severe cases of keratoconjunctivitis sicca. Maxillofac Plast Reconstr Surg 37:5. doi:10.1186/s40902-015-0006-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsukita S, Furuse M, Itoh M (2001) Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2:285–293. doi:10.1038/35067088

    Article  CAS  PubMed  Google Scholar 

  • Yang NY, Ding C, Li J, Zhang Y, Xiang RL, Wu LL, Yu GY, Cong X (2017) Muscarinic acetylcholine receptor-mediated tight junction opening is involved in epiphora in late phase of submandibular gland transplantation. J Mol Histol. doi:10.1007/s10735-016-9709-9

    Google Scholar 

  • Yu D, Turner JR (2008) Stimulus-induced reorganization of tight junctionstructure: the role of membrane traffic. Biochim Biophys Acta 1778:709–716. doi:10.1016/j.bbamem.2007.07.027

    Article  CAS  PubMed  Google Scholar 

  • Yu GY, Zhu ZH, Mao C, Cai ZG, Zou LH, Lu L, Zhang L, Peng X, Li N, Huang Z (2004) Microvascular autologous submandibular gland transfer in severe cases of keratoconjunctivitis sicca. Int J Oral Maxillofac Surg 33:235–239. doi:10.1006/ijom.2002.0438

    Article  CAS  PubMed  Google Scholar 

  • Zhang GH, Wu LL, Yu GY (2013) Tight junctions and paracellular fluid and ion transport in salivary glands. Chin J Dent Res 16:13–46

    PubMed  Google Scholar 

  • Zhang LW, Cong X, Zhang Y, Wei T, Su YC, Serrão AC, Brito AR Jr, Yu GY, Hua H, Wu LL (2016) Interleukin-17 impairs salivary tight junction integrity in Sjogren’s syndrome. J Dent Res 95:784–792. doi:10.1177/0022034516634647

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China 81200799 (CD), 81300893 (XC) and 81470756 (GYY), and Beijing Natural Science Foundation 7173263 (XC).

Author’s contributions

CD and XC performed the major experiments and wrote the manuscript. XMZ and SLL participated in data interpretation and manuscript improvement. LLW and GYY designed the study, analyzed the data, and wrote the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Ling Wu or Guang-Yan Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Chong Ding and Xin Cong contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, C., Cong, X., Zhang, XM. et al. Decreased interaction between ZO-1 and occludin is involved in alteration of tight junctions in transplanted epiphora submandibular glands. J Mol Hist 48, 225–234 (2017). https://doi.org/10.1007/s10735-017-9716-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-017-9716-5

Keywords

Navigation