Skip to main content

Advertisement

Log in

Evaluating the effect of silver nanoparticles on testes of adult albino rats (histological, immunohistochemical and biochemical study)

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Silver nanoparticles (AgNPs) are widely used in medicine, however, they have toxic impacts on different organs. AgNPs distribution to the testes was reported, so, we aimed to study the effect of intraperitoneal injection of AgNPs, at different concentrations and different time durations, on adult rat testes. Sixty healthy adult male Wistar albino rats were divided into three groups; control group (Group I) and two experimental groups (Groups II & III), each of which were subdivided into two subgroups. Rats in group II were exposed for 7 days to low and high doses of AgNPs, respectively. Rats in group III were exposed for 28 days to low and high doses of AgNPs, respectively. Testicular sections were stained with H&E, Toluidine blue, Immunohistochemical staining for Ki-67 and CD68 and Electron microscope examination were performed. Serum testosterone level and Quantitative Real-Time PCR for spermatogenesis genes were measured. Group IIa & IIb showed thickened capsule studded with nanoparticles, congested blood vessels, disorganized seminiferous tubules (Sts) and detached germinal epithelium. Group IIIa & IIIb showed marked reduction in the germinal epithelium, and shrunken Sts with the absence of sperms in most of them, which was more evident with higher doses of AgNPs. Significant decrease in cell proliferation and increase in interstitial tissue macrophages were more detected in groups II & III than in the control group. Decreased serum testosterone and decreased expression levels of spermatogenesis genes in groups IIa, IIb & IIIa, IIIb than in the control group were observed. In conclusion: intraperitoneal injection of AgNPs adversely affected the structure of adult rat testes. The tissue damage was more manifested with increased dose and duration of exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

(AgNPs):

Silver nanoparticles

(Sts):

Seminiferous tubules

(NPs):

Nanoparticles

(PVP):

Polyvinylpyrrolidone

(H&E):

Hematoxylin and Eosin

(PBS):

Phosphate-buffered saline

(DAB):

3,3′-diaminobenzidine-tetrahydrochloride

(Dazl):

‘Deleted in azoospermia-like’

(Tnp2):

Transition protein 2

(GDNF):

Glial cell-line-derived neurotropic factor

(BTB):

Blood-testis barrier

(ROS):

Reactive oxygen species

(MoO3):

Molybdenum trioxide

(STAR):

Steroidogenic Acute Regulatory protein

(GSCs):

Germline stem cells

(BBB):

Blood–brain barrier

References

  • Alam MS, Andrina BB, Tay TW, Tsunekawa N, Kanai Y, Kurohmaru M (2010) Single administration of di(n-butyl) phthalate delays spermatogenesis in prepubertal rats. Tissue Cell 42:129–135

    Article  CAS  PubMed  Google Scholar 

  • Amin Y, Hawas A, El-Batal A, Hassan S, Elsayed M (2015) Evaluation of Acute and Subchronic Toxicity of Silver Nanoparticles in Normal and Irradiated Animals. Br J Pharmacol Toxicol 6(2):22–38

    CAS  Google Scholar 

  • Asare N, Instanes C, Sandberg WJ, Refsnes M, Schwarze P, Kruszewski M, Brunborg G (2012) Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology 291(1):65–72

    Article  CAS  PubMed  Google Scholar 

  • Asharani PV, Wu YL, Gong Z et al (2008) Toxicity of silver nanoparticles in zebra fish models. Nanotechnology 19(25):255102

    Article  CAS  PubMed  Google Scholar 

  • Attia A (2014) Evaluation of the Testicular Alterations Induced By Silver Nanoparticles in Male Mice: biochemical. Histol Ultrastruct Stud RJPBCS 5(4):1558–1589

    Google Scholar 

  • Aziz N, Saleh RA, Sharma RK, Lewis-Jones I, Esfandiari N, Thomas AJ et al (2004) Novel association between sperm reactive oxygen species production, sperm morphological defects, and the sperm deformity index. Fertil Steril 81:349–354

    Article  CAS  PubMed  Google Scholar 

  • Baki ME, Miresmaili SM, Pourentezari M et al (2014) Effects of silver nano-particles on sperm parameters, number of Leydig cells and sex hormones in rats. Iran J Reprod Med 12(2):139–144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bancroft J, Layton C (2013) Hematoxylin and eosin. In: Suvarna SK, Layton C, Bancroft JD (eds) Theory and Practice of histological techniques, Ch. 10 and 11, 7th edn. Churchill Livingstone of Elsevier, Philadelphia, pp 172–214

  • Braydich-Stolle L, Hussain S, Schlager J, Hofmann M (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88:412–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braydich-Stolle LK, Lucas B, Schrand A, Murdock RC, Lee T, Schlager JJ et al (2010) Silver nanoparticles disrupt GDNF/Fyn kinase signaling in spermatogonial stem cells. Toxicol Sci 116(2):577–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cayli S, Ocakli S, Senel U, Eyerci N, Delibasi T (2016) Role of p97/Valosin-containing protein (VCP) and Jab1/CSN5 in testicular ischaemia-reperfusion injury. J Mol Histol 47:91–100

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Schluesener H (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176:1–12

    Article  CAS  PubMed  Google Scholar 

  • Chrastina A, Schnitzer JE (2010) Iodine-125 radiolabeling of silver nanoparticles for in vivo SPECT imaging. Int J Nanomed 5:653–659

    Google Scholar 

  • Collodel G, Terzuoli G, Mazzi L, Pascarelli NA, Renieri T, Moretti E (2013) In Vitro Effect of gold or silver nanoparticles on meiotic and postmeiotic fractions of rat germinal cells. Open Androl J 5:10–15

    Article  CAS  Google Scholar 

  • DeFalco T, Potter S, Williams A, Waller B, Kan M, Capel B (2015) Macrophages Contribute to the Spermatogonial Niche in the Adult Testis. Cell Rep 12:1107–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doudi M, Setorki M (2014) Acute effect of nanosilver to function and tissue liver of rat after intraperitoneal injection. J Biol Sci 14(3):213–219

    Article  Google Scholar 

  • Fijak M, Meinhardt A (2006) The testis in immune privilege. Immunol Rev 213:66–81

    Article  CAS  PubMed  Google Scholar 

  • Foldbjerg R, Autrup H (2013) Mechanisms of Silver Nanoparticle Toxicity. Arch Basic Appl Med 1(1):5–15

    Google Scholar 

  • Garcia TX, Costac GMJ, Franc LR, Hofmann MC (2014) Sub-acute intravenous administration of silver nanoparticles in malemice alters Leydig cell function and testosterone levels. Reprod Toxicol 45:59–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garza-Ocanas L, Ferrer DA, Burt J, Diaz-Torres LA, Ramirez CM, Rodriguez VT, Lujan RR, Romanovicz D, Jose-Yacaman M (2010) Biodistribution and long-term fate of silver nanoparticles functionalized with bovine serum albumin in rats. Metallomics 2(3):204–210

    Article  CAS  PubMed  Google Scholar 

  • Glauret A, Lewis P (1998) Biological Specimen Preparation for Transmission Electron Microscopy, 1st edn. Portland Press, London

    Google Scholar 

  • Goluza T, Boscanin A, Cvetko J, Kozina V, Kosovit M, Bernat M, Kasum M, Kaštelan C, JeDek D (2014) Macrophages and Leydig Cells in Testicular Biopsies of Azoospermic Men. BioMed Res Int 2014:1–14

  • Goodhew P, Humphreys J, Beanland R (2001) Electron Microscopy and Analysis, 3rd edn. Taylor and Francis, London

    Google Scholar 

  • Gozde ES, Yasemin EC, Cenk U, Emel DE, Feriha E (2012) Distribution of Zonula Occludens-1 and Occludin and alterations of testicular morphology after in utero radiation and postnatal hyperthermia in rats. Int J Exp Pathol 93(6):438–449

    Article  Google Scholar 

  • Gromadzka-Ostrowska J, Dziendzikowska K, Lankoff A, Dobrzyńska M, Instanes C, Brunborg G, Gajowik A, Radzikowska J, Wojewódzka M, Kruszewski M (2012) Silver nanoparticles effects on epididymal sperm in rats. Toxicol Lett 214(3):251–258

    Article  CAS  PubMed  Google Scholar 

  • Hedger MP (2002) Macrophages and the immune responsiveness of the testis. J Reprod Immunol 57(1–2):19–34. doi:10.1016/S0165-0378(02)00016-5.PMID12385831

    Article  CAS  PubMed  Google Scholar 

  • Hess RA, Nakai M (2000) Histopathology of the male reproductive system induced by the fungicide benomyl. Histol Histopathol 15(1):207–224

    CAS  PubMed  Google Scholar 

  • Hubbs AF, Mercer RR, Benkovic SA et al (2011) Nanotoxicology – a pathologist’s perspective. Toxicol Pathol 39:301–324

    Article  CAS  PubMed  Google Scholar 

  • Hussain SM, Hess KL (2005) Invitro toxicity of nano-particles in BRL 3A rat liver cells. Toxicol Vitro 19:975–983

    Article  CAS  Google Scholar 

  • Iavicoli I, Fontana L, Leso V, Bergamaschi A (2013) The Effects of Nanomaterials as Endocrine Disruptors, Review. Int J Mol Sci 14:16732–16801. doi:10.3390/ijms140816732

    Article  PubMed  PubMed Central  Google Scholar 

  • Ioanna KO, Biskos G (2014) Methods for assessing basic particle properties and cytotoxicity of engineered nanoparticles. Toxics 2:79–91

    Article  Google Scholar 

  • Kalishwaralal K, Barathmanikanth S, Pandian SR, Deepak V, Gurunathan S (2010) Silver nano-A trove for retinal therapies. J Control Release 145:76–90

    Article  CAS  PubMed  Google Scholar 

  • Kara A, Unal D, Simsek N, Yucel A, Yucel N, Selli J (2014) Ultra-structural changes and apoptotic activity in cerebellum of post-menopausal-diabetic rats: a histochemical and ultra-structural study. J Gynecol Endocrinol 30(3):226–231. doi:10.3109/09513590.2013.864270

    Article  CAS  Google Scholar 

  • Khanlarkhani N, Pasbakhsh P, Mortezaee K, Naji M, Amidi F, Najafi A, Sobhani A, Zendedel A (2016) Effect of human recombinant granulocyte colony-stimulating factor on rat busulfan-induced testis injury. J Mol Histol 47:59–67

    Article  CAS  PubMed  Google Scholar 

  • Kim YS, Kim JS, Cho HS, Rha DS, Kim JM, Park JD, Choi BS, Lim R, Chang HK, Chung YH, Kwon IH, Jeong J, Han BS, Yu IJ (2008) Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 20(6):575–583

    Article  CAS  PubMed  Google Scholar 

  • Kim YS, Song MY, Park JD, Song KS, Ryu HR, Chung YH, Chang HK, Lee JH, Oh KH, Kelman BJ, Hwang IK, Yu IJ (2010) Subchronic oral toxicity of silver nanoparticles. Part Fibre Toxicol 7(1):1–20

    Article  CAS  Google Scholar 

  • Kim S, Kim S, Lee S et al (2011) Characterization of the effects of silver nanoparticles on liver cells using HR-MAS NMR spectroscopy. Bull Korean Chem Soc 32:2021–2026

    Article  CAS  Google Scholar 

  • Krawetz SA, De Rooij DG, Hedger MP (2009) Molecular aspects of male fertility. International workshop on molecular andrology. EMBO Rep 10(10):1087–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan Z, Yang WX (2012) Nanoparticles and spermatogenesis: how do nanoparticles affect spermatogenesis and penetrate the blood–testis barrier. Nanomedicine 7(4):579–596

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Kim YS, Song KS, Ryu HR, Sung JH, Park JD et al (2013) Biopersistence of silver nanoparticles in tissues from Sprague Dawley rats. Part Fibre Toxicol 10:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim D, Roh JY, Eom HJ et al (2012) Oxidative stress-related PMK- 1 P38 MAPK activation as a mechanism for toxicity of silver nanoparticles to reproduction in the nematode Caenorhabditis elegans. Environ Toxicol Chem 31:585–592

    Article  CAS  PubMed  Google Scholar 

  • Liu TD, Yu BY, Luo FH, Zhang XL, Wu SC, Liu LH, Wu YJ (2012) Gene expression profiling of rat testis development duringthe early postnatal stag. Reprod Domest Anim 47(5):724–731

    Article  CAS  PubMed  Google Scholar 

  • Loeschner K, Hadrup N, Qvortrup K, Larsen A, Gao X, Vogel U, Mortensen A, Lam HR, Larsen EH (2011) Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part Fibre Toxicol 8:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukyanenko YO, Chen JJ, Hutson JC (2001) Production of 25-hydroxycholesterol by testicular macrophages and its effects on Leydig cells. Biol Reprod 64(3):790–796

    Article  CAS  PubMed  Google Scholar 

  • Lukyanenko Y, Chen JJ, Hutson JC (2002) Testosterone regulates 25-hydroxycholesterol production in testicular macrophages. Biol Reprod 67(5):1435–1438

    Article  CAS  PubMed  Google Scholar 

  • Manin OI, Nikolaev VA, Kolomiĭtsev AA, Lebedenko I (2006) Comparative toxicological evaluation of domestic golden alloys for soldering. Stomatologiia 86(1):64–67

    Google Scholar 

  • McShan D, Ray PC, Yu H (2014) Molecular toxicity mechanism of nanosilver. J Food Drug Anal 22(1):116–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller SC, Bowman BM, Heidi G (1983) Structure, cytochemistry, endocytic activity, and immunoglobulin (Fc) receptors of rat testicular interstitial-tissue macrophages. Rowland Am J Anat 168(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Miresmaeili SM, Halvaei I, Fesahat F, Fallah A, Nikonahad N, Taherinejad M (2013) Evaluating the role of silver nanoparticles on acrosomal reaction and spermatogenic cells in rat. Iran J Reprod Med 11(5):423–430

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miura N, Shinohara Y (2009) Cytotoxic effect and apoptosis induction by silver nanoparticles in HeLa cells. Biochem Biophys Res Commun 390:733–737

    Article  CAS  PubMed  Google Scholar 

  • Moaddab S, Ahari H, Shahbazzadeh D, Motallebi A, Anvar A, Rahman-Nya J, Shokrgozar M (2011) Toxicity Study of Nanosilver (Nanocid®) on Osteoblast Cancer Cell Line. Int Nano Lett 1(1):11–16

    CAS  Google Scholar 

  • Mocan T, Clichici S, Agoston-Coldea L, Mocan L, Simon S, Ilie IR, Biris AR, Mures A (2010) Implications of oxidative stress mechanisms in toxicity of nanoparticles: review. Acta Physiol Hung 97(3):247–255

    Article  CAS  PubMed  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  CAS  PubMed  Google Scholar 

  • Nowack B, Krug HF, Height M (2011) 120 years of nanosilver history: implications for policy makers. Environ Sci Technol 45(4):1177–1183

    Article  CAS  PubMed  Google Scholar 

  • Ong C, Lee QY, Cai Y, Liu X, Ding J, Yung LY, Bay BH, Baeg GH (2016) Silver nanoparticles disrupt germline stem cell maintenance in the Drosophila testis. Sci Rep 6:20632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orazizadeh M, Khorsandi L, Absalan F, Hashemitabar M, Daneshi E (2014) Effect of beta-carotene on titanium oxide nanoparticles-induced testicular toxicity in mice. J Assist Reprod Genet 31:561–568. doi:10.1007/s10815-014-0184-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Park E, Bae E (2010) Repeated-dose toxicity and inflmmatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharm 30:162–168

    Article  CAS  Google Scholar 

  • Park HJ, Wang Y (2007) Induction of Oxidative stress by silver Nano-particles in Cultured Leydig Cells. Environ Toxicol 22:57–64

    Google Scholar 

  • Park EJ, Bae E, Yi J, Kim Y, Choi K, Lee SH, Yoon J, Lee BC, Park K (2010) Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol 30(2):162–168

    Article  CAS  PubMed  Google Scholar 

  • Park K, Park EJ, Chun IK, Choi K, Lee SH, Yoon J, Lee BC (2011) Bioavailability and toxicokinetics of citrate-coated silver nanoparticles in rats. Arch Pharm Res 34(1):153–158

    Article  CAS  PubMed  Google Scholar 

  • Ramos-Vara JA, Kiupel M, Baszier T, Bliven L, Brodersen B, Chelack B et al (2008) Suggested guidelines for immunohistochemical techniques in veterinary diagnostic laboratories. J Vet Diagn Invest 20:393–413

    Article  PubMed  Google Scholar 

  • Russell LD, Ettlin RA, Sinha Hikim AP, Clegg ED (1990) Mammalian spermatogenesis. Histol Histopathol Eval Test 1:1–40

    CAS  Google Scholar 

  • Ryu JY, Lee BM, Kacew S, Kim HS (2007) Identification of differentially expressed genes in the testis of Sprague-Dawley rats treated with di(n-butyl) phthalate. Toxicology 234:103–112

    Article  CAS  PubMed  Google Scholar 

  • Sardari RR, Zarchi SR, Talebi A et al (2012) Toxicological effects of silver nanoparticles in rats. Afr J Microbiol Res 6:5587–5593

    CAS  Google Scholar 

  • Sarhan O, Hussein R (2014) Effects of Intraperitoneally Injected Silver Nanoparticles on Histological Structures and Blood Parameters in the Albino Rat. Int J Nanomed 9:1505–1517

    Google Scholar 

  • Sung JH, Ji JH, Park JD, Yoon JU, Kim DS, Jeon KS, Song MY, Jeong J, Han BS, Han JH, Chung YH, Chang HK, Lee JH, Cho MH, Kelman BJ, Yu IJ (2009) Subchronic Inhalation Toxicity of Silver Nanoparticles. Toxicol Sci 108(2):452–461

    Article  CAS  PubMed  Google Scholar 

  • Takeda K, Suzuki KI, Ishihara A, Kubo-Irie M, Fujimoto R, Tabata M et al (2009) Nanoparticles transferred from pregnant mice to their offspring can damage the genital and cranial nerve systems. J Health Sci 55:95–102

    Article  CAS  Google Scholar 

  • Tang J (2008) Status of biological evaluation on silver nanoparticles. J Biomed Eng 25:958–961

    CAS  Google Scholar 

  • Tang J, Xiong L, Wang S, Wang J, Liu L, Li J, Yuan F, Xi T (2009) Distribution, translocation and accumulation of silver nanoparticles in rats. J Nanosci Nanotechnol 9(8):4924–4932

    Article  CAS  PubMed  Google Scholar 

  • Terzuoli G, Iacoponi F, Moretti E, Renieri T, Baldi G, Collodel G (2011) In vitro effect of silver engineered nanoparticles on human spermatozoa. J Siena Acad Sci 3:27–29

    Article  Google Scholar 

  • Thakur M, Gupta H, Singh D, Mohanty IR, Maheswari U, Vanage G, Joshi DS (2014) Histopathological and ultra structural effects of nanoparticles on rat testis following 90 days (Chronic study) of repeated oral administration. J Nanobiotechnol 12(1):1–42

    Article  Google Scholar 

  • Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M (2010) An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 408(5):999–1006

    Article  CAS  PubMed  Google Scholar 

  • van der Zande M, Vandebriel RJ, Van DE, Kramer E, Herrera RZ, Serrano-Rojero CS, Gremmer ER, Mast J, Peters RJ, Hollman PC, Hendriksen PJ, Marvin HJ, Peijnenburg AA, Bouwmeester H (2012) Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano 6(8):7427–7442

    Article  PubMed  Google Scholar 

  • Wijnhoven SW, Peijnenburg WJ, Herberts CA, Hagens WI, Oomen AG, Heugens EH, Roszek B, Bisschops J, Gosens I, Van de Meent D, Dekkers S, De Jong WH, Van Zijverden M, Sips AJ, Geertsma RE (2009) Nano–silver–a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicol 3(2):109–138

    Article  CAS  Google Scholar 

  • World Health Organization (2010) WHO Laboratory Manual for the Examination 62 and Processing of Human Semen, 5th edn. World Health Organization, Geneva

    Google Scholar 

  • Xiao L, Xiao YC, Zhi CW, Tong S, Huna Z (2013) Effects of exposure to bisphenol A during pregnancy and lactation on the testicular morphology and caspase-3 protein expression of ICR pups. Biomed Rep 1(3):420–424

    Google Scholar 

  • Xiu ZM, Ma J, Alvarez PJ (2011) Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ Sci Technol 45:9003–9008

    Article  CAS  PubMed  Google Scholar 

  • Yen HJ, Hsu SH, Tsai CL (2009) Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small 5:1553–1561

    Article  CAS  PubMed  Google Scholar 

  • Yoshida Y, Itoh N, Saito Y, Hayakawa M, Niki E (2004) Application of water-soluble radical initiator, 2, 2′-azobis-[2-(2-imidazolin-2-yl) propane] dihydrochloride, to a study of oxidative stress. Free Radic Res 38(4):375–384

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Liu X, Peng J, He D, Lin T, Zhu J, Li X, Zhang Y, Wei G (2014) Potential spermatogenesis recovery with bone marrow mesenchymal stem cells in an azoospermic rat model. Int J Mol Sci 15(8):13151–13165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samah M. Ahmed.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, S.M., Abdelrahman, S.A. & Shalaby, S.M. Evaluating the effect of silver nanoparticles on testes of adult albino rats (histological, immunohistochemical and biochemical study). J Mol Hist 48, 9–27 (2017). https://doi.org/10.1007/s10735-016-9701-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-016-9701-4

Keywords

Navigation