Skip to main content
Log in

Increased expression of actin filament-stabilizing protein tropomyosin after rat traumatic brain injury

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Tropomyosin (TM), is a coiled-coil dimmer which modulates actin filament properties, has been implicated in the control of actin filament dynamics during cell migration, morphogenesis, and cytokinesis. However, the expressions and possible functions of tropomyosin in central nervous system (CNS) lesion remain unknown. In this study, we found the expression of tropomyosin gradually increased in rat brains subjected to traumatic brain injury (TBI). Double immunofluorescence staining showed tropomyosin was expressed in neurons and reactive astrocytes following TBI but not in quiescent astrocytes in normal brains. Furthermore, we detected that proliferating cell nuclear antigen (PCNA) had the co-localization with GFAP, and tropomyosin. In conclusion, this was the first description of tropomyosin expression in rat traumatic brain. Our date suggested that tropomyosin might be involved in the astrocytes proliferation following TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arifin MZ, Faried A, Shahib MN, Wiriadisastra K, Bisri T (2011) Inhibition of activated NR2B gene- and caspase-3 protein-expression by glutathione following traumatic brain injury in a rat model. Asian J Neurosurg 6:72–77

    Article  PubMed  Google Scholar 

  • Balasubramanian MK, Helfman DM, Hemmingsen SM (1992) A new tropomyosin essential for cytokinesis in the fission yeast S. pombe. Nature 360:84–87

    Article  PubMed  CAS  Google Scholar 

  • Becker EB, Bonni A (2004) Cell cycle regulation of neuronal apoptosis in development and disease. Prog Neurobiol 72:1–25

    Article  PubMed  CAS  Google Scholar 

  • Blanchoin L, Pollard TD, Hitchcock-DeGregori SE (2001) Inhibition of the Arp2/3 complex-nucleated actin polymerization and branch formation by tropomyosin. Curr Biol 11:1300–1304

    Article  PubMed  CAS  Google Scholar 

  • Bohmer RM, Scharf E, Assoian RK (1996) Cytoskeletal integrity is required throughout the mitogen stimulation phase of the cell cycle and mediates the anchorage-dependent expression of cyclin D1. Mol Biol Cell 7:101–111

    PubMed  CAS  Google Scholar 

  • Chen J, Mao H, Zou H, Jin W, Ni L, et al. (2012) Up-regulation of ski-interacting protein in rat brain cortex after traumatic brain injury. J Mol Histol

  • Chirumamilla S, Sun D, Bullock MR, Colello RJ (2002) Traumatic brain injury induced cell proliferation in the adult mammalian central nervous system. J Neurotrauma 19:693–703

    Article  PubMed  CAS  Google Scholar 

  • Copani A, Uberti D, Sortino MA, Bruno V, Nicoletti F et al (2001) Activation of cell-cycle-associated proteins in neuronal death: a mandatory or dispensable path? Trends Neurosci 24:25–31

    Article  PubMed  CAS  Google Scholar 

  • Di Giovanni S, Movsesyan V, Ahmed F, Cernak I, Schinelli S et al (2005) Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. Proc Natl Acad Sci USA 102:8333–8338

    Article  PubMed  Google Scholar 

  • Fawcett JW (1997) Astrocytic and neuronal factors affecting axon regeneration in the damaged central nervous system. Cell Tissue Res 290:371–377

    Article  PubMed  CAS  Google Scholar 

  • Ferrier R, Had L, Rabie A, Faivre-Sarrailh C (1994) Coordinated expression of five tropomyosin isoforms and beta-actin in astrocytes treated with dibutyryl cAMP and cytochalasin D. Cell Motil Cytoskeleton 28:303–316

    Article  PubMed  CAS  Google Scholar 

  • Fujita T, Yoshimine T, Maruno M, Hayakawa T (1998) Cellular dynamics of macrophages and microglial cells in reaction to stab wounds in rat cerebral cortex. Acta Neurochir (Wien) 140:275–279

    Article  CAS  Google Scholar 

  • Galloway PG, Likavec MJ, Perry G (1990) Tropomyosin isoform expression in normal and neoplastic astrocytes. Lab Invest 62:163–170

    PubMed  CAS  Google Scholar 

  • Had L, Faivre-Sarrailh C, Legrand C, Rabie A (1993) The expression of tropomyosin genes in pure cultures of rat neurons, astrocytes and oligodendrocytes is highly cell-type specific and strongly regulated during development. Brain Res Mol Brain Res 18:77–86

    Article  PubMed  CAS  Google Scholar 

  • Hannan AJ, Schevzov G, Gunning P, Jeffrey PL, Weinberger RP (1995) Intracellular localization of tropomyosin mRNA and protein is associated with development of neuronal polarity. Mol Cell Neurosci 6:397–412

    Article  PubMed  CAS  Google Scholar 

  • Hill-Felberg SJ, McIntosh TK, Oliver DL, Raghupathi R, Barbarese E (1999) Concurrent loss and proliferation of astrocytes following lateral fluid percussion brain injury in the adult rat. J Neurosci Res 57:271–279

    Article  PubMed  CAS  Google Scholar 

  • Hughes JA, Cooke-Yarborough CM, Chadwick NC, Schevzov G, Arbuckle SM et al (2003) High-molecular-weight tropomyosins localize to the contractile rings of dividing CNS cells but are absent from malignant pediatric and adult CNS tumors. Glia 42:25–35

    Article  PubMed  Google Scholar 

  • Jiang S, Wu X, Yan Y, Xu J, Shao B et al (2012) The expression changes of Numblike in rat brain cortex after traumatic brain injury. J Mol Histol 43:195–201

    Article  PubMed  CAS  Google Scholar 

  • Kato H, Takahashi A, Itoyama Y (2003) Cell cycle protein expression in proliferating microglia and astrocytes following transient global cerebral ischemia in the rat. Brain Res Bull 60:215–221

    Article  PubMed  CAS  Google Scholar 

  • Koguchi K, Nakatsuji Y, Nakayama K, Sakoda S (2002) Modulation of astrocyte proliferation by cyclin-dependent kinase inhibitor p27(Kip1). Glia 37:93–104

    Article  PubMed  Google Scholar 

  • Kurahashi H, Imai Y, Yamamoto M (2002) Tropomyosin is required for the cell fusion process during conjugation in fission yeast. Genes Cells 7:375–384

    Article  PubMed  CAS  Google Scholar 

  • Li W, Gao FB (2003) Actin filament-stabilizing protein tropomyosin regulates the size of dendritic fields. J Neurosci 23:6171–6175

    PubMed  CAS  Google Scholar 

  • Little AR, O’Callagha JP (2001) Astrogliosis in the adult and developing CNS: is there a role for proinflammatory cytokines? Neurotoxicology 22:607–618

    Article  PubMed  CAS  Google Scholar 

  • Liu DX, Greene LA (2001) Neuronal apoptosis at the G1/S cell cycle checkpoint. Cell Tissue Res 305:217–228

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Wang Y, Cheng C, Chen Y, Shi S, Qin J, Xiao F, Zhou D, Lu M, Lu Q, Shen A (2010) A relationship between p27(kip1) and Skp2 after adult brain injury: implications for glial proliferation. J Neurotrauma 27:361–371

    Article  PubMed  Google Scholar 

  • Logan A, Frautschy SA, Gonzalez AM, Baird A (1992) A time course for the focal elevation of synthesis of basic fibroblast growth factor and one of its high-affinity receptors (flg) following a localized cortical brain injury. J Neurosci 12:3828–3837

    PubMed  CAS  Google Scholar 

  • MacGregor AJ, Dougherty AL, Galarneau MR (2011) Injury-specific correlates of combat-related traumatic brain injury in operation iraqi freedom. J Head Trauma Rehabil 26:312–318

    Article  PubMed  Google Scholar 

  • Marshall LF (2000) Head injury: recent past, present, and future. Neurosurgery 47:546–561

    PubMed  CAS  Google Scholar 

  • McGraw J, Hiebert GW, Steeves JD (2001) Modulating astrogliosis after neurotrauma. J Neurosci Res 63:109–115

    Article  PubMed  CAS  Google Scholar 

  • Morris GF, Mathews MB (1989) Regulation of proliferating cell nuclear antigen during the cell cycle. J Biol Chem 264:13856–13864

    PubMed  CAS  Google Scholar 

  • Nieto-Sampedro M (1999) Neurite outgrowth inhibitors in gliotic tissue. Adv Exp Med Biol 468:207–224

    Article  PubMed  CAS  Google Scholar 

  • Norton WT (1999) Cell reactions following acute brain injury: a review. Neurochem Res 24:213–218

    Article  PubMed  CAS  Google Scholar 

  • Percival JM, Thomas G, Cock TA, Gardiner EM, Jeffrey PL et al (2000) Sorting of tropomyosin isoforms in synchronised NIH 3T3 fibroblasts: evidence for distinct microfilament populations. Cell Motil Cytoskeleton 47:189–208

    Article  PubMed  CAS  Google Scholar 

  • Perry SV (2001) Vertebrate tropomyosin: distribution, properties and function. J Muscle Res Cell Motil 22:5–49

    Article  PubMed  CAS  Google Scholar 

  • Raghupathi R (2004) Cell death mechanisms following traumatic brain injury. Brain Pathol 14:215–222

    Article  PubMed  Google Scholar 

  • Ridet JL, Malhotra SK, Privat A, Gage FH (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–577

    Article  PubMed  CAS  Google Scholar 

  • Schevzov G, Gunning P, Jeffrey PL, Temm-Grove C, Helfman DM et al (1997) Tropomyosin localization reveals distinct populations of microfilaments in neurites and growth cones. Mol Cell Neurosci 8:439–454

    Article  PubMed  CAS  Google Scholar 

  • Shi W, Gong P, Fan J, Yan YH, Ni L et al (2012) The expression pattern of ADP-ribosyltransferase 3 in rat traumatic brain injury. J Mol Histol 43:37–47

    Article  PubMed  CAS  Google Scholar 

  • Sofroniew MV (2005) Reactive astrocytes in neural repair and protection. Neuroscientist 11:400–407

    Article  PubMed  CAS  Google Scholar 

  • Stamm S, Casper D, Lees-Miller JP, Helfman DM (1993) Brain-specific tropomyosins TMBr-1 and TMBr-3 have distinct patterns of expression during development and in adult brain. Proc Natl Acad Sci USA 90:9857–9861

    Article  PubMed  CAS  Google Scholar 

  • Vrhovski B, Lemckert F, Gunning P (2004) Modification of the tropomyosin isoform composition of actin filaments in the brain by deletion of an alternatively spliced exon. Neuropharmacology 47:684–693

    Article  PubMed  CAS  Google Scholar 

  • Weinberger RP, Henke RC, Tolhurst O, Jeffrey PL, Gunning P (1993) Induction of neuron-specific tropomyosin mRNAs by nerve growth factor is dependent on morphological differentiation. J Cell Biol 120:205–215

    Article  PubMed  CAS  Google Scholar 

  • Wong K, Wessels D, Krob SL, Matveia AR, Lin JL et al (2000) Forced expression of a dominant-negative chimeric tropomyosin causes abnormal motile behavior during cell division. Cell Motil Cytoskeleton 45:121–132

    Article  PubMed  CAS  Google Scholar 

  • Xu T, Wang X, Cao M, Wu X, Yan Y et al (2012) Increased expression of BAG-1 in rat brain cortex after traumatic brain injury. J Mol Histol 43:335–342

    Article  PubMed  CAS  Google Scholar 

  • Yan Y, Gong P, Jin W, Xu J, Wu X, et al. (2012) The cell-specific upregulation of bone morphogenetic protein-10 (BMP-10) in a model of rat cortical brain injury. J Mol Histol 43:543–552

    Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 81070992) and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yilu Gao, Chunfeng Liu or Yongjin Pan.

Additional information

Xinmin Wu and Hongran Fu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Fu, H., Zou, F. et al. Increased expression of actin filament-stabilizing protein tropomyosin after rat traumatic brain injury. J Mol Hist 44, 37–45 (2013). https://doi.org/10.1007/s10735-012-9461-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-012-9461-8

Keywords

Navigation