Skip to main content
Log in

UV-induced ubiquitylation of XPC complex, the UV-DDB-ubiquitin ligase complex, and DNA repair

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

The DNA nucleotide excision repair (NER) system is our major defense against carcinogenesis. Defects in NER are associated with several human genetic disorders including xeroderma pigmentosum (XP), which is characterized by a marked predisposition to skin cancer. For initiation of the repair reaction at the genome-wide level, a complex containing one of the gene products involved in XP, the XPC protein, must bind to the damaged DNA site. The UV-damaged DNA-binding protein (UV-DDB), which is impaired in XP group E patients, has also been implicated in damage recognition in global genomic NER, but its precise functions and its relationship to the XPC complex have not been elucidated. However, the recent discovery of the association of UV-DDB with a cullin-based ubiquitin ligase has functionally linked the two damage recognition factors and shed light on novel mechanistic and regulatory aspects of global genomic NER. This article summarizes our current knowledge of the properties of the XPC complex and UV-DDB and discusses possible roles for ubiquitylation in the molecular mechanisms that underlie the efficient recognition and repair of DNA damage, particularly that induced by ultraviolet light irradiation, in preventing damage-induced mutagenesis as well as carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aboussekhra A, Biggerstaff M, Shivji MKK, Vilpo JA, Moncollin V, Podust VN, Protic M, Hübscher U, Egly J-M, Wood RD (1995) Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell 80:859–868

    PubMed  Google Scholar 

  • Andrejeva J, Poole E, Young DF, Goodbourn S, Randall RE (2002) The p127 subunit (DDB1) of the UV-DNA damage repair binding protein is essential for the targeted degradation of STAT1 by the V protein of the paramyxovirus simian virus 5. J Virol 76:11,379–11,386

    Google Scholar 

  • Araki M, Masutani C, Takemura M, Uchida A, Sugasawa K, Kondoh J, Ohkuma Y, Hanaoka F (2001) Centrosome protein centrin 2/caltractin 1 is part of the xeroderma pigmentosum group C complex that initiates global genome nucleotide excision repair. J Biol Chem 276:18,665–18,672

    Google Scholar 

  • Araújo SJ, Nigg EA, Wood RD (2001) Strong functional interactions of TFIIH with XPC and XPG in human DNA nucleotide excision repair, without a preassembled repairosome. Mol Cell Biol 21:2281–2291

    PubMed  Google Scholar 

  • Araújo SJ, Tirode F, Coin F, Pospiech H, Syväoja JE, Stucki M, Hübscher U, Egly J-M, Wood RD (2000) Nucleotide excision repair of DNA with recombinant human proteins: definition of the minimal set of factors, active forms of TFIIH, and modulation by CAK. Genes Dev 14:349–359

    PubMed  Google Scholar 

  • Arias EE, Walter JC (2006) PCNA functions as a molecular platform to trigger Cdt1 destruction and prevent re-replication. Nat Cell Biol 8:84–90

    PubMed  Google Scholar 

  • Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper JW, Elledge SJ (1996) SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86:263–274

    PubMed  Google Scholar 

  • Batty D, Rapic’-Otrin V, Levine AS, Wood RD (2000) Stable binding of human XPC complex to irradiated DNA confers strong discrimination for damaged sites. J Mol Biol 300:275–290

    PubMed  Google Scholar 

  • Bertolaet BL, Clarke DJ, Wolff M, Watson MH, Henze M, Divita G, Reed SI (2001) UBA domains of DNA damage-inducible proteins interact with ubiquitin. Nat Struct Biol 8:417–422

    PubMed  Google Scholar 

  • Bootsma D, Kraemer KH, Cleaver JE, Hoeijmakers JHJ (2001) Nucleotide excision repair syndromes: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. In: Scriver CR, Beaudet  al, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited disease, vol 1. McGraw-Hill Book Co., New York, NY, pp 677–703

    Google Scholar 

  • Chavanne F, Broughton BC, Pietra D, Nardo T, Browitt A, Lehmann AR, Stefanini M (2000) Mutations in the XPC gene in families with xeroderma pigmentosum and consequences at the cell, protein, and transcript levels. Cancer Res 60:1974–1982

    PubMed  Google Scholar 

  • Chen L, Madura K (2002) Rad23 promotes the targeting of proteolytic substrates to the proteasome. Mol Cell Biol 22:4902–4913

    PubMed  Google Scholar 

  • Chen L, Shinde U, Ortolan TG, Madura K (2001) Ubiquitin-associated (UBA) domains in Rad23 bind ubiquitin and promote inhibition of multi-ubiquitin chain assembly. EMBO Rep 2:933–938

    PubMed  Google Scholar 

  • Chen X, Zhang J, Lee J, Lin PS, Ford JM, Zheng N, Zhou P (2006) A kinase-independent function of c-Abl in promoting proteolytic descruction of damaged DNA binding proteins. Mol Cell 22:489–499

    PubMed  Google Scholar 

  • Chu G, Chang E (1988) Xeroderma pigmentosum group E cells lack a nuclear factor that binds to damaged DNA. Science 242:564–567

    PubMed  Google Scholar 

  • Cong F, Tang J, Hwang BJ, Vuong BQ, Chu G, Goff SP (2002) Interaction between UV-damaged DNA binding activity proteins and the c-Abl tyrosine kinase. J Biol Chem 277:34,870–34,878

    Google Scholar 

  • Cope GA, Suh GS, Aravind L, Schwarz SE, Zipursky SL, Koonin EV, Deshaies RJ (2002) Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science 298:608–611

    PubMed  Google Scholar 

  • Datta A, Bagchi S, Nag A, Shiyanov P, Adami GR, Yoon T, Raychaudhuri P (2001) The p48 subunit of the damaged-DNA binding protein DDB associates with the CBP/p300 family of histone acetyltransferase. Mutat Res 486:89–97

    PubMed  Google Scholar 

  • Dualan R, Brody T, Keeney S, Nichols AF, Admon A, Linn S (1995) Chromosomal localization and cDNA cloning of the genes (DDB1 and DDB2) for the p127 and p48 subunits of a human damage-specific DNA binding protein. Genomics 29:62–69

    PubMed  Google Scholar 

  • El-Mahdy MA, Zhu Q, Wang Q, Wani G, Prætorius-Ibba M, Wani AA (2006) Cullin 4A-mediated proteolysis of DDB2 protein at DNA damage sites regulates in vivo lesion recognition by XPC. J Biol Chem 281:13,404–13,411

    Google Scholar 

  • Evans E, Fellows J, Coffer A, Wood RD (1997a) Open complex formation around a lesion during nucleotide excision repair provides a structure for cleavage by human XPG protein. EMBO J 16:625–638

    Google Scholar 

  • Evans E, Moggs JG, Hwang JR, Egly J-M, Wood RD (1997b) Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. EMBO J 16:6559–6573

    Google Scholar 

  • Feldman RM, Correll CC, Kaplan KB, Deshaies RJ (1997) A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91:221–230

    PubMed  Google Scholar 

  • Fitch ME, Cross IV, Turner SJ, Adimoolam S, Lin CX, Williams KG, Ford JM (2003a) The DDB2 nucleotide excision repair gene product p48 enhances global genomic repair in p53 deficient human fibroblasts. DNA Repair (Amst) 2:819–826

    Google Scholar 

  • Fitch ME, Nakajima S, Yasui A, Ford JM (2003b) In vivo recruitment of XPC to UV-induced cyclobutane pyrimidine dimers by the DDB2 gene product. J Biol Chem 278:46,906–46,910

    Google Scholar 

  • Friedberg EC (2001) How nucleotide excision repair protects against cancer. Nat Rev Cancer 1:22–33

    PubMed  Google Scholar 

  • Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T (2006) DNA repair and mutagenesis, 2nd edn. ASM Press, Washington, DC

    Google Scholar 

  • Fujiwara Y, Masutani C, Mizukoshi T, Kondo J, Hanaoka F, Iwai S (1999) Characterization of DNA recognition by the human UV-damaged DNA-binding protein. J Biol Chem 274:20,027–20,033

    Google Scholar 

  • Giglia-Mari G, Coin F, Ranish JA, Hoogstraten D, Theil A, Wijgers N, Jaspers NGJ, Raams A, Argentini M, van der  Spek PJ, Botta E, Stefanini M, Egly J-M, Aebersold R, Hoeijmakers JHJ, Vermeulen W (2004) A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nat Genet 36:714–719

    PubMed  Google Scholar 

  • Gillette TG, Huang W, Russell SJ, Reed SH, Johnston SA, Friedberg EC (2001) The 19S complex of the proteasome regulates nucleotide excision repair in yeast. Genes Dev 15:1528–1539

    PubMed  Google Scholar 

  • Gillette TG, Yu S, Zhou Z, Waters R, Johnston SA, Reed SH (2006) Distinct functions of the ubiquitin-proteasome pathway influence nucleotide excision repair. EMBO J published on line (doi: 10.1038/sj.emboj.7601120)

  • Groisman R, Polanowska J, Kuraoka I, Sawada J, Saijo M, Drapkin R, Kisselev AF, Tanaka K, Nakatani Y (2003) The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113:357–367

    Google Scholar 

  • Guzder SN, Habraken Y, Sung P, Prakash L, Prakash S (1995) Reconstitution of yeast nucleotide excision repair with purified Rad proteins, replication protein A, and transcription factor TFIIH. J Biol Chem 270:12,973–12,976

    Google Scholar 

  • Hayes S, Shiyanov P, Chen X, Raychaudhuri P (1998) DDB, a putative DNA repair protein, can function as a transcriptional partner of E2F1. Mol Cell Biol 18:240–249

    PubMed  Google Scholar 

  • Higa LAA, Mihaylov IS, Banks DP, Zheng J, Zhang H (2003) Radiation-mediated proteolysis of CDT1 by CUL4-ROC1 and CSN complexes constitutes a new checkpoint. Nat Cell Biol 5:1008–1015

    PubMed  Google Scholar 

  • Hiyama H, Yokoi M, Masutani C, Sugasawa K, Maekawa T, Tanaka K, Hoeijmakers JHJ, Hanaoka F (1999) Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23 mediates interaction with S5a subunit of 26 S proteasome. J Biol Chem 274:28,019–28,025

    Google Scholar 

  • Hoeijmakers JHJ (2001) Genome maintenance mechanisms for preventing cancer. Nature 411:366–374

    PubMed  Google Scholar 

  • Hu J, McCall CM, Ohta T, Xiong Y (2004) Targeted ubiquitination of CDT1 by the DDB1-CUL4A-ROC1 ligase in response to DNA damage. Nat Cell Biol 6:1003–1009

    PubMed  Google Scholar 

  • Hwang BJ, Ford JM, Hanawalt PC, Chu G (1999) Expression of the p48 xeroderma pigmentosum gene is p53 dependent and is involved in global genome repair. Proc Natl Acad Sci USA 96:424–428

    PubMed  Google Scholar 

  • Hwang BJ, Liao JC, Chu G (1996) Isolation of a cDNA encoding a UV-damaged DNA binding factor defective in xeroderma pigmentosum group E cells. Mutat Res 362:105–117

    PubMed  Google Scholar 

  • Hwang BJ, Toering S, Francke U, Chu G (1998) p48 Activates a UV-damaged-DNA binding factor and is defective in xeroderma pigmentosum group E cells that lack binding activity. Mol Cell Biol 18:4391–4399

    PubMed  Google Scholar 

  • Itoh T, Cado D, Kamide R, Linn S (2004) DDB2 gene disruption leads to skin tumors and resistance to apoptosis after exposure to ultraviolet light but not a chemical carcinogen. Proc Natl Acad Sci USA 101:2052–2057

    PubMed  Google Scholar 

  • Itoh T, Linn S, Ono T, Yamaizumi M (2000) Reinvestigation of the classification of five cell strains of xeroderma pigmentosum group E with reclassification of three of them. J Invest Dermatol 114:1022–1029

    PubMed  Google Scholar 

  • Itoh T, O’Shea C, Linn S (2003) Impaired regulation of tumor suppressor p53 caused by mutations in the xeroderma pigmentosum DDB2 gene: mutual regulatory interactions between p48DDB2 and p53. Mol Cell Biol 23:7540–7553

    PubMed  Google Scholar 

  • Janicijevic A, Sugasawa K, Shimizu Y, Hanaoka F, Wijgers N, Djurica M, Hoeijmakers JHJ, Wyman C (2003) DNA bending by the human damage recognition complex XPC-HR23B. DNA Repair (Amst) 2:325–336

    Google Scholar 

  • Jia S, Kobayashi R, Grewal SIS (2005) Ubiquitin ligase component Cul4 associates with Clr4 histone methyltransferase to assemble heterochromatin. Nat Cell Biol 7:1007–1013

    PubMed  Google Scholar 

  • Kamiuchi S, Saijo M, Citterio E, de  Jager M, Hoeijmakers JHJ, Tanaka K (2002) Translocation of Cockayne syndrome group A protein to the nuclear matrix: possible relevance to transcription-coupled DNA repair. Proc Natl Acad Sci USA 99:201–206

    PubMed  Google Scholar 

  • Kamura T, Koepp DM, Conrad MN, Skowyra D, Moreland RJ, Iliopoulos O, Lane WS, Kaelin WG Jr, Elledge SJ, Conaway RC, Harper JW, Conaway JW (1999) Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science 284:657–661

    PubMed  Google Scholar 

  • Keeney S, Chang GJ, Linn S (1993) Characterization of a human DNA damage binding protein implicated in xeroderma pigmentosum E. J Biol Chem 268:21,293–21,300

    Google Scholar 

  • Keeney S, Wein H, Linn S (1992) Biochemical heterogeneity in xeroderma pigmentosum complementation group E. Mutat Res 273:49–56

    PubMed  Google Scholar 

  • Khan SG, Levy HL, Legerski R, Quackenbush E, Reardon JT, Emmert S, Sancar A, Li L, Schneider TD, Cleaver JE, Kraemer KH (1998) Xeroderma pigmentosum group C splice mutation associated with autism and hypoglycinemia. J Invest Dermatol 111:791–796

    PubMed  Google Scholar 

  • Kim J-K, Patel D, Choi B-S (1995) Contrasting structural impacts induced by cissyn cyclobutane dimer and (6-4) adduct in DNA duplex decamers: implication in mutagenesis and repair activity. Photochem Photobiol 62:44–50

    PubMed  Google Scholar 

  • Kusumoto R, Masutani C, Sugasawa K, Iwai S, Araki M, Uchida A, Mizukoshi T, Hanaoka F (2001) Diversity of the damage recognition step in the global genomic nucleotide excision repair in vitro. Mutat Res 485:219–227

    PubMed  Google Scholar 

  • Lambertson D, Chen L, Madura K (1999) Pleiotropic defects caused by loss of the proteasome-interacting factors Rad23 and Rpn10 of Saccharomyces cerevisiae. Genetics 153:69–79

    PubMed  Google Scholar 

  • Legerski R, Peterson C (1992) Expression cloning of a human DNA repair gene involved in xeroderma pigmentosum group C. Nature 359:70–73

    PubMed  Google Scholar 

  • Li L, Bales ES, Peterson CA, Legerski RJ (1993) Characterization of molecular defects in xeroderma pigmentosum group C. Nat Genet 5:413–417

    PubMed  Google Scholar 

  • Li T, Chen X, Garbutt KC, Zhou P, Zheng N (2006) Structure of DDB1 in complex with a paramyxovirus V protein: viral hijack of a propeller cluster in ubiquitin ligase. Cell 124:105–117

    PubMed  Google Scholar 

  • Lin GY, Paterson RG, Richardson CD, Lamb RA (1998) The V protein of the paramyxovirus SV5 interacts with damage-specific DNA binding protein. Virology 249:189–200

    PubMed  Google Scholar 

  • Liu J, Furukawa M, Matsumoto T, Xiong Y (2002) NEDD8 modification of CUL1 dissociates p120CAND1, an inhibitor of CUL1-SKP1 binding and SCF ligases. Mol Cell 10:1511–1518

    PubMed  Google Scholar 

  • Lyapina S, Cope G, Shevchenko A, Serino G, Tsuge T, Zhou C, Wolf DA, Wei N, Shevchenko A, Deshaies RJ (2001) Promotion of NEDD-CUL1 conjugate cleavage by COP9 signalosome. Science 292:1382–1385

    PubMed  Google Scholar 

  • Masutani C, Sugasawa K, Yanagisawa J, Sonoyama T, Ui M, Enomoto T, Takio K, Tanaka K, van der  Spek PJ, Bootsma D, Hoeijmakers JHJ, Hanaoka F (1994) Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homolog of yeast RAD23. EMBO J 13:1831–1843

    PubMed  Google Scholar 

  • Matsuda N, Azuma K, Saijo M, Iemura S, Hioki Y, Natsume T, Chiba T, Tanaka K, Tanaka K (2005) DDB2, the xeroderma pigmentosum group E gene product, is directly ubiquitylated by Cullin 4A-based ubiquitin ligase complex. DNA Repair (Amst) 4:537–545

    Google Scholar 

  • Matsunaga T, Mu D, Park CH, Reardon JT, Sancar A (1995) Human DNA repair excision nuclease. Analysis of the roles of the subunits involved in dual incisions by using anti-XPG and anti-ERCC1 antibodies. J Biol Chem 270:20,862–20,869

    Google Scholar 

  • McAteer K, Jing Y, Kao J, Taylor J-S, Kennedy MA (1998) Solution-state structure of a DNA dodecamer duplex containing a cissyn thymine cyclobutane dimer, the major UV photoproduct of DNA. J Mol Biol 282:1013–1032

    PubMed  Google Scholar 

  • McCready S (1994) Repair of 6-4 photoproducts and cyclobutane pyrimidine dimers in rad mutants of Saccharomyces cerevisiae. Mutat Res 315:261–273

    PubMed  Google Scholar 

  • Mitchell DL, Nairn RS (1989) The biology of the (6-4) photoproduct. Photochem Photobiol 49:805–819

    PubMed  Google Scholar 

  • Moser J, Volker M, Kool H, Alekseev S, Vrieling H, Yasui A, van Zeeland AA, Mullenders LHF (2005) The UV-damaged DNA binding protein mediates efficient targeting of the nucleotide excision repair complex to UV-induced photo lesions. DNA Repair (Amst) 4:571–582

    Google Scholar 

  • Mu D, Park CH, Matsunaga T, Hsu DS, Reardon JT, Sancar A (1995) Reconstitution of human DNA repair excision nuclease in a highly defined system. J Biol Chem 270:2415–2418

    PubMed  Google Scholar 

  • Mu D, Wakasugi M, Hsu DS, Sancar A (1997) Characterization of reaction intermediates of human excision repair nuclease. J Biol Chem 272:28,971–28,979

    Google Scholar 

  • Neuwald AF, Poleksic A (2000) PSI-BLAST searches using hidden markov models of structural repeats: prediction of an unusual sliding DNA clamp and of beta-propellers in UV-damaged DNA-binding protein. Nucleic Acids Res 28:3570–3580

    PubMed  Google Scholar 

  • Ng JMY, Vermeulen W, van der  Horst GTJ, Bergink S, Sugasawa K, Vrieling H, Hoeijmakers JHJ (2003) A novel regulation mechanism of DNA repair by damage-induced and RAD23-dependent stabilization of xeroderma pigmentosum group C protein. Genes Dev 17:1630–1645

    PubMed  Google Scholar 

  • Ng JMY, Vrieling H, Sugasawa K, Ooms MP, Grootegoed JA, Vreeburg JT, Visser P, Beems RB, Gorgels TG, Hanaoka F, Hoeijmakers JHJ, van der Horst GTJ (2002) Developmental defects and male sterility in mice lacking the ubiquitin-like DNA repair gene mHR23B. Mol Cell Biol 22:1233–1245

    PubMed  Google Scholar 

  • Nichols AF, Itoh T, Graham JA, Liu W, Yamaizumi M, Linn S (2000) Human damage-specific DNA-binding protein p48. Characterization of XPE mutations and regulation following UV irradiation. J Biol Chem 275:21,422–21,428

    Google Scholar 

  • Nichols AF, Ong P, Linn S (1996) Mutations specific to the xeroderma pigmentosum group E Ddb phenotype. J Biol Chem 271:24,317–24,320

    Google Scholar 

  • Nishi R, Okuda Y, Watanabe E, Mori T, Iwai S, Masutani C, Sugasawa K, Hanaoka F (2005) Centrin 2 stimulates nucleotide excision repair by interacting with xeroderma pigmentosum group C protein. Mol Cell Biol 25:5664–5674

    PubMed  Google Scholar 

  • O’Donovan A, Davies AA, Moggs JG, West SC, Wood RD (1994) XPG endonuclease makes the 3′ incision in human DNA nucleotide excision repair. Nature 371:432–435

    PubMed  Google Scholar 

  • Obuse C, Yang H, Nozaki N, Goto S, Okazaki T, Yoda K (2004) Proteomics analysis of the centromere complex from HeLa interphase cells: UV-damaged DNA binding protein 1 (DDB-1) is a component of the CEN-complex, while BMI-1 is transiently co-localized with the centromeric region in interphase. Genes Cells 9:105–120

    PubMed  Google Scholar 

  • Ohta T, Michel JJ, Schottelius AJ, Xiong Y (1999) ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. Mol Cell 3:535–541

    PubMed  Google Scholar 

  • Okuda Y, Nishi R, Ng JMY, Vermeulen W, van der  Horst GTJ, Mori T, Hoeijmakers JHJ, Hanaoka F, Sugasawa K (2004) Relative levels of the two mammalian Rad23 homologs determine composition and stability of the xeroderma pigmentosum group C protein complex. DNA Repair (Amst) 3:1285–1295

    Google Scholar 

  • Otrin VR, McLenigan M, Takao M, Levine AS, Protic M (1997) Translocation of a UV-damaged DNA binding protein into a tight association with chromatin after treatment of mammalian cells with UV light. J Cell Sci 110:1159–1168

    PubMed  Google Scholar 

  • Payne A, Chu G (1994) Xeroderma pigmentosum group E binding factor recognizes a broad spectrum of DNA damage. Mutat Res 310:89–102

    PubMed  Google Scholar 

  • Petroski MD, Deshaies RJ (2005) Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 6:9–20

    PubMed  Google Scholar 

  • Raasi S, Pickart CM (2003) Rad23 ubiquitin-associated domains (UBA) inhibit 26 S proteasome-catalyzed proteolysis by sequestering lysine 48-linked polyubiquitin chains. J Biol Chem 278:8951–8959

    PubMed  Google Scholar 

  • Rapic’-Otrin V, McLenigan MP, Bisi DC, Gonzalez M, Levine AS (2002) Sequential binding of UV DNA damage binding factor and degradation of the p48 subunit as early events after UV irradiation. Nucleic Acids Res 30:2588–2598

    Google Scholar 

  • Rapic’-Otrin V, Navazza V, Nardo T, Botta E, McLenigan M, Bisi DC, Levine AS, Stefanini M (2003) True XP group E patients have a defective UV-damaged DNA binding protein complex and mutations in DDB2 which reveal the functional domains of its p48 product. Hum Mol Genet 12:1507–1522

    Google Scholar 

  • Reardon JT, Nichols AF, Keeney S, Smith CA, Taylor JS, Linn S, Sancar A (1993) Comparative analysis of binding of human damaged DNA-binding protein (XPE) and Escherichia coli damage recognition protein (UvrA) to the major ultraviolet photoproducts: T[c,s]T, T[t,s]T, T[6-4]T, and T[Dewar]T. J Biol Chem 268:21,301–21,308

    Google Scholar 

  • Riedl T, Hanaoka F, Egly J-M (2003) The comings and goings of nucleotide excision repair factors on damaged DNA. EMBO J 22:5293–5303

    PubMed  Google Scholar 

  • Russell SJ, Reed SH, Huang W, Friedberg EC, Johnston SA (1999) The 19S regulatory complex of the proteasome functions independently of proteolysis in nucleotide excision repair. Mol Cell 3:687–695

    PubMed  Google Scholar 

  • Salisbury JL, Suino KM, Busby R, Springett M (2002) Centrin-2 is required for centriole duplication in mammalian cells. Curr Biol 12:1287–1292

    PubMed  Google Scholar 

  • Schauber C, Chen L, Tongaonkar P, Vega I, Lambertson D, Potts W, Madura K (1998) Rad23 links DNA repair to the ubiquitin/proteasome pathway. Nature 391:715–718

    PubMed  Google Scholar 

  • Seol JH, Feldman RM, Zachariae W, Shevchenko A, Correll CC, Lyapina S, Chi Y, Galova M, Claypool J, Sandmeyer S, Nasmyth K, Deshaies RJ, Shevchenko A, Deshaies RJ (1999) Cdc53/cullin and the essential Hrt1 RING-H2 subunit of SCF define a ubiquitin ligase module that activates the E2 enzyme Cdc34. Genes Dev 13:1614–1626

    PubMed  Google Scholar 

  • Shivji MKK, Eker APM, Wood RD (1994) DNA repair defect in xeroderma pigmentosum group C and complementing factor from HeLa cells. J Biol Chem 269:22,749–22,757

    Google Scholar 

  • Shivji MKK, Podust VN, Hübscher U, Wood RD (1995) Nucleotide excision repair DNA synthesis by DNA polymerase in the presence of PCNA, RFC, and RPA. Biochemistry 34:5011–5017

    PubMed  Google Scholar 

  • Shiyanov P, Hayes SA, Donepudi M, Nichols AF, Linn S, Slagle BL, Raychaudhuri P (1999a) The naturally occurring mutants of DDB are impaired in stimulating nuclear import of the p125 subunit and E2F1-activated transcription. Mol Cell Biol 19:4935–4943

    Google Scholar 

  • Shiyanov P, Nag A, Raychaudhuri P (1999b) Cullin 4A associates with the UV-damaged DNA-binding protein DDB. J Biol Chem 274:35,309–35,312

    Google Scholar 

  • Sijbers AM, de  Laat WL, Ariza RR, Biggerstaff M, Wei Y-F, Moggs JG, Carter KC, Shell BK, Evans E, de  Jong MC, Rademakers S, de  Rooij J, Jaspers NGJ, Hoeijmakers JHJ, Wood RD (1996) Xeroderma pigmentosum group F caused by a defect of in structure-specific DNA repair endonuclease. Cell 86:811–822

    PubMed  Google Scholar 

  • Skowyra D, Craig KL, Tyers M, Elledge SJ, Harper JW (1997) F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91:209–219

    PubMed  Google Scholar 

  • Snyderwine EG, Bohr VA (1992) Gene- and strand-specific damage and repair in Chinese hamster ovary cells treated with 4-nitroquinoline 1-oxide. Cancer Res 52:4183–4189

    PubMed  Google Scholar 

  • Sugasawa K, Ng JM, Masutani C, Maekawa T, Uchida A, van der  Spek PJ, Eker AP, Rademakers S, Visser C, Aboussekhra A, Wood RD, Hanaoka F, Bootsma D, Hoeijmakers JH (1997) Two human homologs of Rad23 are functionally interchangeable in complex formation and stimulation of XPC repair activity. Mol Cell Biol 17:6924–6931

    PubMed  Google Scholar 

  • Sugasawa K, Ng JMY, Masutani C, Iwai S, van der  Spek PJ, Eker APM, Hanaoka F, Bootsma D, Hoeijmakers JHJ (1998) Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol Cell 2:223–232

    PubMed  Google Scholar 

  • Sugasawa K, Okamoto T, Shimizu Y, Masutani C, Iwai S, Hanaoka F (2001) A multistep damage recognition mechanism for global genomic nucleotide excision repair. Genes Dev 15:507–521

    PubMed  Google Scholar 

  • Sugasawa K, Okuda Y, Saijo M, Nishi R, Matsuda N, Chu G, Mori T, Iwai S, Tanaka K, Tanaka K, Hanaoka F (2005) UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex. Cell 121:387–400

    PubMed  Google Scholar 

  • Sugasawa K, Shimizu Y, Iwai S, Hanaoka F (2002) A molecular mechanism for DNA damage recognition by the xeroderma pigmentosum group C protein complex. DNA Repair 1:95–107

    PubMed  Google Scholar 

  • Takao M, Abramic M, Moos M Jr, Otrin VR, Wootton JC, McLenigan M, Levine AS, Protic M (1993) A 127 kDa component of a UV-damaged DNA-binding complex, which is defective in some xeroderma pigmentosum group E patients, is homologous to a slime mold protein. Nucleic Acids Res 21:4111–4118

    PubMed  Google Scholar 

  • Tan P, Fuchs SY, Chen A, Wu K, Gomez C, Ronai Z, Pan ZQ (1999) Recruitment of a ROC1-CUL1 ubiquitin ligase by Skp1 and HOS to catalyze the ubiquitination of IκBα. Mol Cell 3:527–533

    PubMed  Google Scholar 

  • Tang J, Chu G (2002) Xeroderma pigmentosum complementation group E and UV-damaged DNA-binding protein. DNA Repair 1:601–616

    PubMed  Google Scholar 

  • Tang JY, Hwang BJ, Ford JM, Hanawalt PC, Chu G (2000) Xeroderma pigmentosum p48 gene enhances global genomic repair and suppresses UV-induced mutagenesis. Mol Cell 5:737–744

    PubMed  Google Scholar 

  • Tang MS, Bohr VA, Zhang XS, Pierce J, Hanawalt PC (1989) Quantification of aminofluorene adduct formation and repair in defined DNA sequences in mammalian cells using the UVRABC nuclease. J Biol Chem 264:14,455–14,462

    Google Scholar 

  • Tornaletti S, Hanawalt PC (1999) Effect of DNA lesions on transcription elongation. Biochimie 81:139–146

    PubMed  Google Scholar 

  • Treiber DK, Chen Z, Essigmann JM (1992) An ultraviolet light-damaged DNA recognition protein absent in xeroderma pigmentosum group E cells binds selectively to pyrimidine (6-4) pyrimidone photoproducts. Nucleic Acids Res 20:5805–5810

    PubMed  Google Scholar 

  • Ulane CM, Horvath CM (2002) Paramyxoviruses SV5 and HPIV2 assemble STAT protein ubiquitin ligase complexes from cellular components. Virology 304:160–166

    PubMed  Google Scholar 

  • van der  Spek PJ, Eker A, Rademakers S, Visser C, Sugasawa K, Masutani C, Hanaoka F, Bootsma D, Hoeijmakers JH (1996a) XPC and human homologs of RAD23: intracellular localization and relationship to other nucleotide excision repair complexes. Nucleic Acids Res 24:2551–2559

    Google Scholar 

  • van der Spek PJ, Visser CE, Hanaoka F, Smit B, Hagemeijer A, Bootsma D, Hoeijmakers JH (1996b) Cloning, comparative mapping, and RNA expression of the mouse homologues of the Saccharomyces cerevisiae nucleotide excision repair gene RAD23. Genomics 31:20–27

    Google Scholar 

  • van Hoffen A, Natarajan AT, Mayne LV, van Zeeland AA, Mullenders LHF, Venema J (1993) Deficient repair of the transcribed strand of active genes in Cockayne syndrome cells. Nucleic Acids Res 21:5890–5895

    PubMed  Google Scholar 

  • van Oosten M, Rebel H, Friedberg EC, van Steeg H, van der  Horst GTJ, van Kranen HJ, Westerman A, van Zeeland AA, Mullenders LHF, de  Gruijl FR (2000) Differential role of transcription-coupled repair in UVB-induced G2 arrest and apoptosis in mouse epidermis. Proc Natl Acad Sci USA 97:11,268–11,273

    Google Scholar 

  • Venema J, Mullenders LHF, Natarajan AT, van Zeeland AA, Mayne LV (1990) The genetic defect in Cockayne’s syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA. Proc Natl Acad Sci USA 87:4704–4711

    Google Scholar 

  • Venema J, van Hoffen A, Karcagi V, Natarajan AT, van Zeeland AA, Mullenders LHF (1991) Xeroderma pigmentosum complementation group C cells remove pyrimidine dimers selectively from the transcribed strand of active genes. Mol Cell Biol 11:4128–4134

    PubMed  Google Scholar 

  • Volker M, Moné MJ, Karmakar P, van Hoffen A, Schul W, Vermeulen W, Hoeijmakers JHJ, van Driel R, van Zeeland AA, Mullenders LHF (2001) Sequential assembly of the nucleotide excision repair factors in vivo. Mol Cell 8:213–224

    PubMed  Google Scholar 

  • Wakasugi M, Kawashima A, Morioka H, Linn S, Sancar A, Mori T, Nikaido O, Matsunaga T (2002) DDB accumulates at DNA damage sites immediately after UV irradiation and directly stimulates nucleotide excision repair. J Biol Chem 277:1637–1640

    PubMed  Google Scholar 

  • Wakasugi M, Reardon J, Sancar A (1997) The non-catalytic function of XPG protein during dual incision in human nucleotide excision repair. J Biol Chem 272:16,030–16,034

    Google Scholar 

  • Wakasugi M, Shimizu M, Morioka H, Linn S, Nikaido O, Matsunaga T (2001) Damaged DNA-binding protein DDB stimulates the excision of cyclobutane pyrimidine dimers in vitro in concert with XPA and replication protein A. J Biol Chem 276:15434–15440

    Google Scholar 

  • Wang H, Zhai L, Xu J, Joo H-Y, Jackson S, Erdjument-Bromage H, Tempst P, Xiong Y, Zhang Y (2006) Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol Cell 22:383–394

    PubMed  Google Scholar 

  • Wertz IE, O’Rourke KM, Zhang Z, Dornan D, Arnott D, Deshaies RJ, Dixit VM (2004) Human De-etiolated-1 regulates c-Jun by assembling a CUL4A ubiquitin ligase. Science 303:1371–1374

    PubMed  Google Scholar 

  • Wilkinson CR, Seeger M, Hartmann-Petersen R, Stone M, Wallace M, Semple C, Gordon C (2001) Proteins containing the UBA domain are able to bind to multi-ubiquitin chains. Nat Cell Biol 3:939–943

    PubMed  Google Scholar 

  • Wittschieben BØ, Iwai S, Wood RD (2005) DDB1-DDB2 (xeroderma pigmentosum group E) protein complex recognizes a cyclobutane pyrimidine dimer, mismatches, apurinic/apyrimidinic sites, and compound lesions in DNA. J Biol Chem 280:39,982–39,989

    Google Scholar 

  • Yokoi M, Masutani C, Maekawa T, Sugasawa K, Ohkuma Y, Hanaoka F (2000) The xeroderma pigmentosum group C protein complex XPC-HR23B plays an important role in the recruitment of transcription factor IIH to damaged DNA. J Biol Chem 275:9870–9875

    PubMed  Google Scholar 

  • Zheng J, Yang X, Harrell JM, Ryzhikov S, Shim EH, Lykke-Andersen K, Wei N, Sun H, Kobayashi R, Zhang H (2002) CAND1 binds to unneddylated CUL1 and regulates the formation of SCF ubiquitin E3 ligase complex. Mol Cell 10:1519–1526

    PubMed  Google Scholar 

  • Zhong W, Feng H, Santiago FE, Kipreos ET (2003) CUL-4 ubiquitin ligase maintains genome stability by restraining DNA-replication licensing. Nature 423:885–889

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaoru Sugasawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugasawa, K. UV-induced ubiquitylation of XPC complex, the UV-DDB-ubiquitin ligase complex, and DNA repair. J Mol Hist 37, 189–202 (2006). https://doi.org/10.1007/s10735-006-9044-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-006-9044-7

Keywords

Navigation