Skip to main content
Log in

Characteristics of service requests and service processes of fire and rescue service dispatch centers

Analysis of real world data and the underlying probability distributions

  • Published:
Health Care Management Science Aims and scope Submit manuscript

Abstract

A sufficient staffing level in fire and rescue dispatch centers is crucial for saving lives. Therefore, it is important to estimate the expected workload properly. For this purpose, we analyzed whether a dispatch center can be considered as a call center. Current call center publications very often model call arrivals as a non-homogeneous Poisson process. This bases on the underlying assumption of the caller’s independent decision to call or not to call. In case of an emergency, however, there are often calls from more than one person reporting the same incident and thus, these calls are not independent. Therefore, this paper focuses on the dependency of calls in a fire and rescue dispatch center. We analyzed and evaluated several distributions in this setting. Results are illustrated using real-world data collected from a typical German dispatch center in Cottbus (“Leitstelle Lausitz”). We identified the Pólya distribution as being superior to the Poisson distribution in describing the call arrival rate and the Weibull distribution to be more suitable than the exponential distribution for interarrival times and service times. However, the commonly used distributions offer acceptable approximations. This is important for estimating a sufficient staffing level in practice using, e.g., the Erlang-C model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. McLay L, Mayorga M (2010) Evaluating emergency medical service performance measures. Health Care Manage Sci 13(2):124–136

    Article  Google Scholar 

  2. Schlechtriemen T, Dirks B, Lackner CK, Moecke H, Stratmann D, Krieter H, Altemeyer KH (2007) Leitstelle—Perspektiven für die zentrale Schaltstelle des Rettungsdienstes. Notf Rettungsmedizin 10(1):47–57 (in German)

    Article  Google Scholar 

  3. Vergeiner G (1999) Bearbeitung eines Notfalleinsatzes in der Leitstelle. In: Vergeiner G (ed) Leitstellen im Rettungsdienst, Aufgaben, Organisation, Technik. Stumpf & Kossendey, Edewecht, pp 63–86 (in German)

    Google Scholar 

  4. Guenal M, Pidd M (2006) Detective work in a police force: meeting standards for call handling. In: Proceedings of the 2006 OR society simulation workshop. http://www.orsoc.org.uk/conf/simulation2006/proceedings/SW06_37PiddGunal.pdf. Accessed 20 June 2011

  5. Hildebrand E (2006) Effizientere Notrufbearbeitung durch integrierte Regionalleitstelle. Notf Rettungsmedizin 9(5):473–477 (in German)

    Article  Google Scholar 

  6. Law concerning rescue service in the federal state Brandenburg (BbgRettG) as at 07/14/08. GVBl.I/08 of 07/17/08(10):186–192 (in German)

  7. Krueger U (2012) Personalbedarfsermittlung für eine Integrierte Regionalleitstelle-Dargestellt am Beispiel der Integrierten Regionalleitstelle Lausitz. Dissertation, Brandenburgische Technische Universität Cottbus, Dr. Kovac̆, Hamburg (in German)

  8. Helber S, Stolletz R (2004) Grundlagen und Probleme der Personalbedarfsermittlung in Inbound Call Centern. Z für Betriebswirtschaft Ergänzungsheft 67(3):67–88 (in German)

    Google Scholar 

  9. Stolletz R, Helber S (2004) Performance analysis of an inbound call center with skills-based routing, a priority queuing system with two classes of impatient customers and heterogeneous agents. OR Spectr 26(3):331–352

    Article  Google Scholar 

  10. Helber S, Stolletz R (2004) Call Center Management in der Praxis. Springer, Berlin Heidelberg (in German)

    Book  Google Scholar 

  11. Koole G, Mandelbaum A (2002) Queuing models of call centres. Ann Oper Res 113(1–4):41–59

    Article  Google Scholar 

  12. Hall RW (1991) Queuing methods for services and manufacturing. Prentice Hall, Englewood Cliffs NJ

    Google Scholar 

  13. Channouf N, L’Écuyer P, Ingolfsson A, Avramidis AN (2007) The application of forecasting technologies to modeling emergency medical system calls in Calgary, Alberta. Health Care Manage Sci 10(1):25–45

    Article  Google Scholar 

  14. Matteson DS, Woodard DB, Henderson SG, McLean MW (2010) Forecasting emergency medical service call arrival rates. http://people.orie.cornell.edu/woodard/MattMcleWood.pdf. Accessed 22 February 2011

  15. Ross S (2009) Introduction to probability statistics for engineers and scientists, 4th edn. Elsevier, Burlington San Diego, London

    Google Scholar 

  16. Tijms HC (1994) Stochastic models—an algorithmic approach. Wiley, Chichester

    Google Scholar 

  17. Mehrotra V, Grossman TA, Samuelson DA (2011) Call center management. In: Cochran JJ (ed) Wiley encyclopedia of operations research and management science. Wiley, Hoboken, New Jersey, pp 353–367

    Google Scholar 

  18. Aksin Z, Armony M, Mehrotra V (2007) The modern call center: a multi-disciplinary perspective on operations management research. Prod Oper Manag 16(6):665–688

    Article  Google Scholar 

  19. Gans N, Koole G, Mandelbaum A (2003) Telephone call centers: tutorial, review and research prospects. Manuf Serv Oper Manag 5(2):79–141

    Article  Google Scholar 

  20. Avramidis A, L’Écuyer P(2005) Modeling and simulation of call centers. In: Proceedings of the 2005 winter simulation conference. IEEE Press, Piscataway, NJ, pp 144–152

    Chapter  Google Scholar 

  21. Koole G (2008) Introduction to the special issue on call center management. Manag Sci 54(2):237

    Article  Google Scholar 

  22. Setzler H, Saydam C, Park S (2009) EMS call volume predictions: a comparative study. Comput Oper Res 36(6):1843–1851

    Article  Google Scholar 

  23. Călinescu M (2009) Forecasting and capacitiy planning for ambulance services. Internsh Rep, Vrije Universiteit Amsterdam. http://www.vu.nl/Images/stageverslag-calnescutcm38-105827.pdf. Accessed 7 April 2012

  24. Slakter M (1965) A comparison of the Pearson chi-square and Kolmogorov goodness-of-fit tests with respect to validity. J Am Stat Assoc 60(311):854–858

    Article  Google Scholar 

  25. Kotz S, Balakrishnan N, Campbell BR, Vidakovic B, Johnson NL (2006) Encyclopedia of statistical sciences, 2nd edn. Wiley, Hoboken, New Jersey, pp 5413–6238

    Google Scholar 

  26. Johnson N, Kemp A, Kotz, S (2005) Univariate discrete distributions. 3rd edn. Wiley, Hoboken, New Jersey

    Book  Google Scholar 

  27. Markov A (1907) Extension of the law of large numbers to dependent variables. Izv Fiz-Mat Obschch Kazan Univ Ser 2 15(4):135–256 (in Russian)

    Google Scholar 

  28. Ehrenfest P, Ehrenfest T (1907) Über zwei bekannte einwände gegen das Boltzmannsche H-Theorem. Phys Z 8(9):311–314

    Google Scholar 

  29. Eggenberger F, Pólya G (1923) Über die Statistik verketteter Vorgänge. Z Angew Math Mech 3(1):279–289

    Article  Google Scholar 

  30. Wanner E (1951) Zur Statistik der Erdbebenschwärme. Meteorol Atmos Phys 4(1):436–448 (in German)

    Google Scholar 

  31. Marsili M, Valleriani A (1998) Self organization of interacting Pólya urns. Eur Phys J B 3(4):417–420

    Article  Google Scholar 

  32. Eggenberger F (1924) Die wahrscheinlichkeitsansteckung. Dissertation, Technische Hochschule Zürich (in German)

  33. Lüders R (1934) Die Statistik der seltenen Ereignisse. Biom 26(1–2):108–128 (in German)

    Google Scholar 

  34. Mahmoud H (2009) Pólya urn models. CRC Press, Boca Raton London, New York

    Google Scholar 

  35. Wei LJ (1979) The generalized Pólya’s urn design for sequential medical trials. Ann Stat 7(2):291–296

    Article  Google Scholar 

  36. Zhang L, Hu F (2009) The Gaussian approximation for multi-color generalized Friedman’s urn model. Sci China Ser A Math 52(6):1305–1326

    Article  Google Scholar 

  37. Hoppe F (1984) Pólya-like urns and the Ewens’ sampling formula. J Math Biol 20(1):91–94

    Article  Google Scholar 

  38. Shah S, Kothari R, Jayadeva S, Chandra S (2009) Trail formation in ants. A generalized Pólya urn process. Swarm Intell 4(2):145–171

    Article  Google Scholar 

  39. Xue J (2006) A Pólya urn model of conformity. Cambridge Working Papers in Economics, Faculty of Economics, University of Cambridge

  40. Pemantle R (1990) A time-dependent version of Pólya’s urn. J Theor Probab 3(4):627–637

    Article  Google Scholar 

  41. Ingolffson A, Akhmetshina E, Budge S, Li Y, Wu X (2002) A survey and experimental comparison of service level approximation methods for non-stationary M/M/s queuing systems. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1.2933&rep=rep1&type=pdf. Accessed 7 April 2012

  42. http://iew3.technion.ac.il/serveng/4CallCenters/Downloads.htm (download). http://iew3.technion.ac.il/serveng/Lectures/Lecture_Markovian_Queues_Erlang_C.pdf (information). Accessed 6 April 2012

  43. Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18(3):293–297

    Google Scholar 

  44. Marshall AW, Olkin I (2007) Life distributions. Springer, New York

    Google Scholar 

  45. Rinne H (2009) The Weibull distribution-a handbook. CRC Press, Boca Raton London, New York

    Google Scholar 

  46. Weibull W (1939) The phenomenon of rupture in solids. Ingeniörs Vetensk Ing Akad Handl 153(2):1–55

    Google Scholar 

  47. Larson RC (1972) Improving the effectiveness of New York city’s 911. In: Drake A, Keeney R (eds) Analysis of public systems. MIT Press, Cambridge, pp 151–180

    Google Scholar 

  48. Alexopolous C, Goldsman D, Fontanesi J, Kopald D, Wilson JR (2008) Modeling patient arrivals in community clinics. Omega 36(1):33–43

    Article  Google Scholar 

  49. Lapierre SD, Goldsman D, Cochran R, DuBow J (1999) Bed allocation techniques based on census data. Socioecon Plan Sci 33(1):25–38

    Article  Google Scholar 

  50. Côté MJ (2005) A note on “bed allocation techniques based on census data”. Socioecon Plan Sci 39(2):183–192

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the three anonymous referees for their very helpful and constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Schimmelpfeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krueger, U., Schimmelpfeng, K. Characteristics of service requests and service processes of fire and rescue service dispatch centers. Health Care Manag Sci 16, 1–13 (2013). https://doi.org/10.1007/s10729-012-9207-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10729-012-9207-x

Keywords

Navigation