Skip to main content

Advertisement

Log in

Optimal incentives for allocating HIV/AIDS prevention resources among multiple populations

  • Published:
Health Care Management Science Aims and scope Submit manuscript

Abstract

Many agencies, such as the United Nations Program on HIV/AIDS (UNAIDS), the World Health Organization (WHO), the World Bank, the U.S. President’s Emergency Plan for AIDS Relief (PEPFAR), and the Global Fund to Fight AIDS, Tuberculosis and Malaria, provide funding to prevent HIV/AIDS infections worldwide. These funds are allocated at multiple levels, resulting in a highly complicated distribution process. An oversight agency allocates funds to various national-level decision-makers who then allocate funds to regional-level decision-makers who in turn distribute the monies to local organizations, programs, or risk groups. Simple allocation techniques are often preferred by the decision-makers at each administrative level, but such methods can lead to sub-optimal allocation of funds. Thus, incentives could be provided to decisionmakers in order to encourage optimal allocation of HIV/AIDS prevention resources. We formulate an incentive-based resource allocation model that takes into consideration strategic interactions between decision-makers in a multiple-level resource-allocation process. We analyze each decision-maker’s behavior at the equilibrium and summarize the results that characterize the optimal solution to the resource-allocation problem. Our intended audiences are technical experts, decision-makers, and policy-makers in governments who can make use of incentives to encourage effective decisions regarding HIV/AIDS policy modeling and budget allocation at local levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. UNAIDS (2009) Making the money work. http://www.unaids.org/en/CountryResponses/MakingTheMoneyWork/default.asp. Accessed August 5, 2011

  2. Ainsworth M, Over AM (1997) Confronting AIDS: Public Priorities in a Global Epidemic. The World Bank Report. Oxford University Press 1:17285.

  3. Mathers CD, Stein C, Doris MF et al. (2002) Global Burden of Disease 2000: Version 2 methods and results, Discussion 2002. World Health Organization, Switzerland, Geneva. http://www.who.int/healthinfo/paper50.pdf. Accessed August 5, 2011

  4. PEPFAR (2011) Addressing Gender and HIV/AIDS. http://www.pepfar.gov/press/2011/157860.htm. Accessed August 5, 2011

  5. Global Fund to Fight AIDS Tuberculosis and Malaria (2007) Proposals process: applying for funding. http://www.theglobalfund.org/en/apply/proposals/. Accessed August 5, 2011

  6. Ahmad E, Brosio G (2006) Handbook of fiscal federalism. Edward Elgar Publishing.

  7. Bird RM, Vaillancourt F (2006) Perspectives on fiscal federalism. World Bank Publications.

  8. Okorafor OA, Thomas S (2007) Protecting resources for primary health care under fiscal federalism: options for resource allocation. Health Policy Plan 22:415–426

    Article  Google Scholar 

  9. Glenngard AH, Maina TM (2007) Reversing the trend of weak policy implementation in the Kenyan health sector–a study of budget allocation and spending of health resources versus set priorities. Health Res Pol Syst 5:3. doi:10.1186/1478-4505-5-3

    Article  Google Scholar 

  10. Johnson-Masotti AP, Pinkerton SD, Holtgrave DR et al (2000) Decision-making in HIV prevention community planning: an integrative review. J Community Health 25:95–112

    Article  Google Scholar 

  11. Forsythe S, Stover J, Bollinger L (2009) The past, present and future of HIV, AIDS and resource allocation. BMC Public Health 9:S4. doi:10.1186/1471-2458-9-S1-S4

    Article  Google Scholar 

  12. Holtgrave DR, Thomas CW, Chen H et al (2000) HIV prevention community planning and communities of color: do resources track the epidemic? AIDS Public Policy J 15:75–81

    Google Scholar 

  13. Valdiserri RO, Aultman TV, Curran JW (1995) Community planning: a national strategy to improve HIV prevention programs. J Community Health 20:87–100

    Article  Google Scholar 

  14. Zaric GS, Brandeau ML (2002) Dynamic resource allocation for epidemic control in multiple populations. Math Med Biol 19:235–255

    Article  Google Scholar 

  15. Epstein DM, Chalabi Z, Claxton K et al (2007) Efficiency, equity, and budgetary policies: informing decisions using mathematical programming. Med Decis Making 27:128–137

    Article  Google Scholar 

  16. Richter A, Hicks KA, Earnshaw SR et al (2008) Allocating HIV prevention resources: a tool for state and local decision making. Health Policy 87:342–349

    Article  Google Scholar 

  17. Earnshaw SR, Hicks K, Richter A et al (2007) A linear programming model for allocating HIV prevention funds with state agencies: a pilot study. Health Care Manag Sci 10:239–252

    Article  Google Scholar 

  18. Ruiz MS (2001) No time to lose: getting more from HIV prevention. National Academy Press.

  19. Brandeau ML, Zaric GS (2009) Optimal investment in HIV prevention programs: more is not always better. Health Care Manag Sci 12:27–37

    Article  Google Scholar 

  20. Lewis HS, Butler TW (2007) An interactive framework for multi-person, multiobjective decisions. Decis Sci 24:1–22

    Article  Google Scholar 

  21. Li X, Beullens P, Jones D et al (2009) An integrated queuing and multi-objective bed allocation model with application to a hospital in China. J Oper Res Soc 60:330–338

    Article  Google Scholar 

  22. Malvankar-Mehta MS, Zaric GS, (2011) Optimal Incentives for Multi-level Allocation of HIV Prevention Resources. Information Systems and Operational Research (Accepted for publication).

  23. Zaric GS, Brandeau ML (2007) A little planning goes a long way: multilevel allocation of HIV prevention resources. Med Decis Making 27:71–81

    Article  Google Scholar 

  24. Lasry A, Zaric GS, Carter MW (2007) Multi-level resource allocation for HIV prevention: a model for developing countries. Eur J Oper Res 180:786–799

    Article  Google Scholar 

  25. Malvankar MM, Zaric GS (2011) Incentives for optimal allocation of HIV prevention resources. Dissertation. Richard Ivey School of Business, University of Western Ontario.

  26. Chick SE, Mamani H, Simchi-Levi D (2008) Supply chain coordination and influenza vaccination. Oper Res 56:1493–1506

    Article  Google Scholar 

  27. Su X, Zenios SA (2006) Recipient choice can address the efficiency-equity trade-off in kidney transplantation: a mechanism design model. Manag Sci 52:1647–1660

    Article  Google Scholar 

  28. McPake B, Hanson K, Adam C (2007) Two-tier charging strategies in public hospitals: implications for intra-hospital resource allocation and equity of access to hospital services. J Health Econ 26:447–462

    Article  Google Scholar 

  29. Sun P, Yang L, de Vericourt F (2009) Selfish drug allocation for containing an international influenza pandemic at the onset. Oper Res 57:1320–1332

    Article  Google Scholar 

  30. Office of AIDS (2010) Cumulative HIV/AIDS Cases in California. HIV/AIDS Surveillance in California. California Department of Public Health. http://www.cdph.ca.gov/programs/aids/Documents/SSQtr4Dec2010.pdf. Accessed May 1, 2011

  31. Bureau of HIV/AIDS Epidemiology (2008) New York State HIV/AIDS Surveillance Annual Report—2006. New York State Department of Health. http://www.health.ny.gov/diseases/aids/statistics/annual/2006/2006-12_annual_surveillance_report.pdf. Accessed May 1, 2011

  32. The Henry J. Kaiser Family Foundation (2009) The Centers for Disease Control and Prevention (CDC) HIV/AIDS Funding, FY2007. http://www.statehealthfacts.kff.org/comparetable.jsp?ind=529&cat=11. Accessed May 1, 2011

Download references

Acknowledgements

We would like to thank Dr. Greg Zaric and Dr. Shaun (Xinghao) Yan for their honest advice regarding the developed model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monali S. Malvankar-Mehta.

Appendix

Appendix

1.1 A.1. Optimal solution of the “Knapsack Continuos Problem” of Stage 3

$$ \matrix{{*{20}{c}} {{ \max }\,I{A_i} = \sum\limits_{{j = 1}}^m {{h_{{ij}}}{y_{{ij}}}}, i = 1,2} \hfill \\ {{\text{s}}{\text{.t}}{.}\,\sum\limits_{{j = 1}}^m {{y_{{ij}}}} \leqslant {Z_i}} \hfill \\ {{y_{{ij}}} \geqslant {r_i}{Z_i}\frac{{{n_{{ij}}}}}{{{N_i}}},\,\,\,\,\,\,j = 1,2, \ldots, m} \hfill \\ } $$

The result of Stage 3 is the function IA i (r i ), the optimal solution of this “Knapsack Continuos Problem” is of the following form:

$$ \matrix{{*{20}{c}} {{y_{{i1}}} = {Z_i} - {r_i}{Z_i}\frac{{{n_{{i2}}}}}{{{N_i}}} - \ldots - {r_i}{Z_i}\frac{{{n_{{im}}}}}{{{N_i}}},i = 1,2} \hfill \\ {{y_{{ij}}} = {r_i}{Z_i}\frac{{{n_{{ij}}}}}{{{N_i}}},\,\,\,\,\,j = 2, \ldots, m} \hfill \\ } $$

The result of Stage 3 is the function IA i (r i ),

$$ \matrix{{*{20}{c}} {I{A_i}\left( {{r_i}} \right) = {Z_i}\left( {{h_{{i1}}} - {r_i}\left( {{h_{{i1}}} - {h_{{i2}}}} \right)\frac{{{n_{{i2}}}}}{{{N_i}}} - \ldots - {r_i}\left( {{h_{{i1}}} - {h_{{im}}}} \right)\frac{{{n_{{im}}}}}{{{N_i}}}} \right)} \\ { = \left( {\frac{{\left( {1 - {r_i} + {r_{{-i }}}} \right)}}{2}\left( {1 - f} \right)B + \left( {\frac{{{N_i}}}{{{N_1} + {N_2}}}} \right)fB} \right)\left( {{h_{{i1}}} - {k_i}} \right),} \\ } $$

where \( {k_i} = \left( {{h_{{i1}}} - {h_{{i2}}}} \right)\frac{{{n_{{i2}}}}}{{{N_i}}} + \ldots + \left( {{h_{{i1}}} - {h_{{im}}}} \right)\frac{{{n_{{im}}}}}{{{N_i}}} < {h_{{i1}}},i = 1,2 \).

We define the following terms before presenting the proof:

$$ \matrix{{*{20}{c}} {{f_{{ti}}} = \frac{{\frac{{\left( {{h_{{i1}}} - {k_i}} \right)\left( {1 - 2{b_i}} \right) + {c_i}{k_i}}}{{{b_i}\left( {{h_{{i1}}} - {k_i}} \right) - {c_i}{k_i}}}}}{{\frac{{2{N_i}}}{{{N_1} + {N_2}}} + \frac{{\left( {{h_{{i1}}} - {k_i}} \right)\left( {1 - 2{b_i}} \right) + {c_i}{k_i}}}{{{b_i}\left( {{h_{{i1}}} - {k_i}} \right) - {c_i}{k_i}}}}},} \\ {{r_{{t - i}}} = \frac{{\left( {{c_i}{k_i} - {b_i}\left( {{h_{{i1}}} - {k_i}} \right)} \right)\frac{{fB{N_i}}}{{{N_1} + {N_2}}} + \left( {{h_{{i1}}} - {k_i}} \right)\left( {1 - f} \right)\frac{B}{2}\left( {1 - {b_i}} \right)}}{{\left( {1 - f} \right)\frac{B}{2}\left( {{b_i}\left( {{h_{{i1}}} - {k_i}} \right) - {c_i}{k_i}} \right)}}.} \\ } $$

1.2 A.2. Proposition 1: For problem L i with three the sub-populations:

  1. 1)

    U i is a concave function of r i and therefore the optimal solution is either \( r_i^{*} = r_i^l \) or \( r_i^{*} = 1 \).

  2. 2)

    Table 1 specifies conditions for existence of Nash equilibria \( \left( {r_i^l,r_{{ - i}}^l} \right),\left( {r_i^l,1} \right),\left( {1,r_{{ - i}}^l} \right) \), and (1,1).

Proof of Proposition 1

  1. (i)

    The lower-level utility function is \( {\left( {{Z_i}} \right)^{{{a_i}}}}{\left( {{r_i}} \right)^{{{b_i}}}}{\left( {I{A_i}} \right)^{{{c_i}}}} \), where \( {Z_i} = \frac{{\left( {1 - {r_i} + {r_{{ - i}}}} \right)}}{2}\left( {1 - f} \right)B + \frac{{{N_i}}}{{{N_1} + {N_2}}}fB \) and \( I{A_i} = \left( {\frac{{\left( {1 - {r_i} + {r_{{ - i}}}} \right)}}{2}\left( {1 - f} \right)B + \left( {\frac{{{N_i}}}{{{N_1} + {N_2}}}} \right)fB} \right)\left( {{h_{{i1}}} - {r_i}\left( {{h_{{i1}}} - {h_{{i2}}}} \right)\frac{{{n_{{i2}}}}}{{{N_2}}} - {r_i}\left( {{h_{{i3}}} - {h_{{i3}}}} \right)\frac{{{n_{{i3}}}}}{{{N_3}}}} \right) \) are substituted to obtain:

    $$ \matrix{{*{20}{c}} {{L_i}:\mathop{{\max }}\limits_{{{r_i}}} {U_i}\left( {{r_i}} \right) = {{\left( {{Z_i}} \right)}^{{{a_i}}}}{{\left( {{r_i}} \right)}^{{{b_i}}}}{{\left( {I{A_i}} \right)}^{{{c_i}}}},\,{\text{where}}\,{a_i} + {b_i} + {c_i} = 1} \hfill \\ {{\text{s}}{\text{.t}}{.}\,0 \leqslant {r_i} \leqslant 1} \hfill \\ } $$

    The first derivative of ln U i (r i ) with respect to r i is given by,

    $$ \matrix{{*{20}{c}} {\frac{d}{{d{r_i}}}\left( {\ln {U_i}\left( {{r_i}} \right)} \right) = \frac{d}{{d{r_i}}}\left( {{a_i}\ln {Z_i} + {b_i}\ln {r_i} + {c_i}\ln I{A_i}} \right)} \hfill \\ { = - \frac{{{a_i}}}{{{Z_i}}}\left( {1 - f} \right)\frac{B}{2} + \frac{{{b_i}}}{{{r_i}}} - \frac{{{c_i}}}{{I{A_i}}}\left( {\left( {1 - f} \right)\frac{B}{2}\left( {{h_{{i1}}} - {r_i}{k_i}} \right) + {k_i}{Z_i}} \right)} \hfill \\ } $$

    where, \( \frac{{d{Z_i}}}{{d{r_i}}} = - \left( {1 - f} \right)\frac{B}{2},\frac{{dI{A_i}}}{{d{r_i}}} = - \left( {1 - f} \right)\frac{B}{2}\left( {{h_{{i1}}} - {r_i}{k_i}} \right) - {k_i}{Z_i} \). The second derivative of ln U i (r i ) with respect to r i is given by,

    $$ \matrix{{*{20}{c}} {\frac{{{d^2}}}{{d{r_i}^2}}\left( {\ln {U_i}\left( {{r_i}} \right)} \right) = \frac{{{a_i}}}{{{Z_i}^2}}\left( {1 - f} \right)\frac{B}{2}\frac{d}{{d{r_i}}}\left( {{Z_i}} \right) - \frac{{{b_i}}}{{{r_i}^2}} - {c_i}\frac{d}{{d{r_i}}}\left( {\frac{{\left( {1 - f} \right)\frac{B}{2}\left( {{h_{{i1}}} - {r_i}{k_i}} \right) + {k_i}{Z_i}}}{{I{A_i}}}} \right)} \hfill \\ { = - \frac{{{a_i}}}{{{Z_i}^2}}{{\left( {1 - f} \right)}^2}\frac{{{B^2}}}{4} - \frac{{{b_i}}}{{{r_i}^2}} - {c_i}\frac{{ - \left( {1 - f} \right)\frac{B}{2}\left( {{h_{{i1}}} - {r_i}{k_i}} \right){k_i}{Z_i} + {{\left( {\left( {1 - f} \right)\frac{B}{2}\left( {{h_{{i1}}} - {r_i}{k_i}} \right) + {k_i}{Z_i}} \right)}^2}}}{{I{A_i}^2}}} \hfill \\ { = - \frac{{{a_i}}}{{{Z_i}^2}}{{\left( {1 - f} \right)}^2}\frac{{{B^2}}}{4} - \frac{{{b_i}}}{{{r_i}^2}} - {c_i}\frac{{{{\left( {1 - f} \right)}^2}\frac{{{B^2}}}{4}{{\left( {{h_{{i1}}} - {r_i}{k_i}} \right)}^2} + {k_i}^2{Z_i}^2}}{{I{A_i}^2}} \leqslant 0.} \hfill \\ } $$

    Clearly, \( \ln \left( {{U_i}\left( {{r_i}} \right)} \right)\prime \prime \leqslant 0 \). Thus, U i (r i ) is a concave function of r i and the optimal solution is either \( r_i^{*} = r_i^l \) or 1.

  2. (ii)

    To obtain specific conditions for existence of Nash equilibria, we solve for r i * by setting, \( \ln \left( {{U_i}\left( {{r_i}} \right)} \right)\prime = 0 \).

The first derivative of lnU i (r i ) is

$$ \matrix{{*{20}{c}} { - \frac{{{a_i}}}{{{Z_i}}}\left( {1 - f} \right)\frac{B}{2} + \frac{{{b_i}}}{{{r_i}}} - \frac{{{c_i}}}{{I{A_i}}}\left( {\left( {1 - f} \right)\frac{B}{2}\left( {{h_{{i1}}} - {r_i}{k_i}} \right) + {k_i}{Z_i}} \right) = 0} \hfill \\ {\frac{{{b_i}}}{{{r_i}}} = \frac{{{a_i}}}{{{Z_i}}}\left( {1 - f} \right)\frac{B}{2} + \frac{{{c_i}}}{{{Z_i}\left( {{h_{{i1}}} - {r_i}{k_i}} \right)}}\left( {\left( {1 - f} \right)\frac{B}{2}\left( {{h_{{i1}}} - {r_i}{k_i}} \right) + {k_i}{Z_i}} \right)} \hfill \\ {{b_i}{Z_i} = \left( {{a_i} + {c_i}} \right){r_i}\left( {1 - f} \right)\frac{B}{2} + \frac{{{c_i}{r_i}}}{{\left( {{h_{{i1}}} - {r_i}{k_i}} \right)}}{k_i}{Z_i}} \hfill \\ } $$

On substituting value of Z i and rearranging terms in the above equation, we obtain

$$ r_i^2{a_q} + {r_i}{b_q} + {c_q} = 0 $$
(11)

where \( {a_q} = {k_i}\left( {1 + {c_i}} \right)\left( {1 - f} \right)\frac{B}{2} \), \( {b_q} = - \left( {{b_i} + {c_i}} \right){k_i}f\frac{{B{N_i}}}{{{N_1} + {N_2}}} - \left( {{h_{{i1}}} + \left( {{b_i} + {c_i}} \right)\left( {1 + {r_{{ - i}}}} \right){k_i}} \right)\left( {1 - f} \right)\frac{B}{2} \), \( {c_q} = {b_i}{h_{{i1}}}\left( {f\frac{{B{N_i}}}{{{N_1} + {N_2}}} + \left( {1 + {r_{{ - i}}}} \right)\left( {1 - f} \right)\frac{B}{2}} \right) \).

Equation (11) has two positive real roots, since \( b_q^2 - 4{a_q}{c_q} > 0 \) as shown below.

$$ \matrix{{*{20}{c}} {b_q^2 - 4{a_q}{c_q} = {{\left( {\left( {{b_i} + {c_i}} \right){k_i}f\frac{{B{N_i}}}{{{N_1} + {N_2}}} + \left( {{h_{{i1}}} + \left( {{b_i} + {c_i}} \right)\left( {1 + {r_{{ - i}}}} \right){k_i}} \right)\left( {1 - f} \right)\frac{B}{2}} \right)}^2} - } \hfill \\ {4\left( {{k_i}\left( {1 + {c_i}} \right)\left( {1 - f} \right)\frac{B}{2}} \right)\left( {{b_i}{h_{{i1}}}\left( {f\frac{{B{N_i}}}{{{N_1} + {N_2}}} + \left( {1 + {r_{{ - i}}}} \right)\left( {1 - f} \right)\frac{B}{2}} \right)} \right)} \hfill \\ { = {{\left( {\left( {{b_i} + {c_i}} \right){k_i}\left( {f\frac{{B{N_i}}}{{{N_1} + {N_2}}} + \left( {1 + {r_{{ - i}}}} \right)\left( {1 - f} \right)\frac{B}{2}} \right) + {h_{{i1}}}\left( {1 - f} \right)\frac{B}{2}} \right)}^2} - } \hfill \\ {4{k_i}\left( {1 - f} \right)\frac{B}{2}{b_i}{h_{{i1}}}\left( {f\frac{{B{N_i}}}{{{N_1} + {N_2}}} + \left( {1 + {r_{{ - i}}}} \right)\left( {1 - f} \right)\frac{B}{2}} \right) - {c_i}4{k_i}\left( {1 - f} \right)\frac{B}{2}{b_i}{h_{{i1}}}\left( {f\frac{{B{N_i}}}{{{N_1} + {N_2}}} + \left( {1 + {r_{{ - i}}}} \right)\left( {1 - f} \right)\frac{B}{2}} \right)} \hfill \\ { = {{\left( {{b_i}{k_i}\left( {f\frac{{B{N_i}}}{{{N_1} + {N_2}}} + \left( {1 + {r_{{ - i}}}} \right)\left( {1 - f} \right)\frac{B}{2}} \right) + {c_i}{k_i}\left( {f\frac{{B{N_i}}}{{{N_1} + {N_2}}} + \left( {1 + {r_{{ - i}}}} \right)\left( {1 - f} \right)\frac{B}{2}} \right) + {h_{{i1}}}\left( {1 - f} \right)\frac{B}{2}} \right)}^2} - } \hfill \\ {4{k_i}\left( {1 - f} \right)\frac{B}{2}{b_i}{h_{{i1}}}\left( {f\frac{{B{N_i}}}{{{N_1} + {N_2}}} + \left( {1 + {r_{{ - i}}}} \right)\left( {1 - f} \right)\frac{B}{2}} \right) - {c_i}4{k_i}\left( {1 - f} \right)\frac{B}{2}{b_i}{h_{{i1}}}\left( {f\frac{{B{N_i}}}{{{N_1} + {N_2}}} + \left( {1 + {r_{{ - i}}}} \right)\left( {1 - f} \right)\frac{B}{2}} \right)} \hfill \\ { = {{\left( {{b_i}{k_i}\left( {f\frac{{B{N_i}}}{{{N_1} + {N_2}}} + \left( {1 + {r_{{ - i}}}} \right)\left( {1 - f} \right)\frac{B}{2}} \right) - {h_{{i1}}}\left( {1 - f} \right)\frac{B}{2}} \right)}^2} + {c_i}^2{k_i}^2{{\left( {f\frac{{B{N_i}}}{{{N_1} + {N_2}}} + \left( {1 + {r_{{ - i}}}} \right)\left( {1 - f} \right)\frac{B}{2}} \right)}^2} + } \hfill \\ {2{c_i}{k_i}\left( {f\frac{{B{N_i}}}{{{N_1} + {N_2}}} + \left( {1 + {r_{{ - i}}}} \right)\left( {1 - f} \right)\frac{B}{2}} \right){h_{{i1}}}\left( {1 - f} \right)\frac{B}{2} + 2{b_i}{c_i}{k_i}^2{{\left( {f\frac{{B{N_i}}}{{{N_1} + {N_2}}} + \left( {1 + {r_{{ - i}}}} \right)\left( {1 - f} \right)\frac{B}{2}} \right)}^2} - } \hfill \\ {{c_i}4{k_i}\left( {1 - f} \right)\frac{B}{2}{b_i}{h_{{i1}}}\left( {f\frac{{B{N_i}}}{{{N_1} + {N_2}}} + \left( {1 + {r_{{ - i}}}} \right)\left( {1 - f} \right)\frac{B}{2}} \right)} \hfill \\ } $$

On solving,

$$ \matrix{{*{20}{c}} { = {{\left( {{b_i}{k_i}\left( {f\frac{{B{N_i}}}{{{N_1} + {N_2}}} + \left( {1 + {r_{{ - i}}}} \right)\left( {1 - f} \right)\frac{B}{2}} \right) - {h_{{i1}}}\left( {1 + {r_{{ - i}}}} \right)\left( {1 - f} \right)\frac{B}{2}} \right)}^2}} \hfill \\ { + {c_i}{k_i}\left( {f\frac{{B{N_i}}}{{{N_1} + {N_2}}} + \left( {1 + {r_{{ - i}}}} \right)\left( {1 - f} \right)\frac{B}{2}} \right)\left( {\left( {{c_i}{k_i} + 2{b_i}{k_i}} \right)\left( {f\frac{{B{N_i}}}{{{N_1} + {N_2}}} + \left( {1 + {r_{{ - i}}}} \right)\left( {1 - f} \right)\frac{B}{2}} \right) + 2{h_{{i1}}}\left( {1 - f} \right)\frac{B}{2}\left( {1 - 2{b_i}} \right)} \right) > 0} \hfill \\ } $$

Thus, Eq. (11) has two positive real roots, \( r_i^l \) and \( r_i^u \), defined by,

$$ r_i^j = \frac{{ - {b_q}\pm \sqrt {{{b_q}^2 - 4{a_q}{c_q}}} }}{{2{a_q}}},j = u,l,i = 1,2 $$
(12)

Since \( b_q^2 > b_q^2 - 4{a_q}{c_q} \), hence, we obtain, \( \left| {{b_q}} \right| > \sqrt {{b_q^2 - 4{a_q}{c_q}}} \) Since,

$$ \matrix{{*{20}{c}} {{b_q} < 0 \Rightarrow \left| {{b_q}} \right| = - {b_q}} \hfill \\ { - {b_q} > \sqrt {{b_q^2 - 4{a_q}{c_q}}} } \hfill \\ { - {b_q} - \sqrt {{b_q^2 - 4{a_q}{c_q}}} > 0} \hfill \\ {\frac{{ - {b_q} - \sqrt {{b_q^2 - 4{a_q}{c_q}}} }}{{2{a_q}}} > 0,\,{\text{because}},\,{a_q} > 0} \hfill \\ } $$

Thus, \( r_i^l > 0 \) and by definition \( 0 < r_i^l < r_i^u \). Further, \( r_i^u > 1 \) since \( - \frac{{{b_q}}}{{2{a_q}}} > 1 \) as shown below.Since h i1 ≈ 0.001 and k i  ≈ .0001. Clearly, h i1 > 2k i implies that \( - \frac{{{b_q}}}{{2{a_q}}} > 1 \).Therefore, clearly, \( r_i^u > 1 \).

We next show that if \( {b_i} > \frac{{{c_i}{k_i}}}{{{h_{{i1}}} - {k_i}}},r_i^l > {r_{{t - i}}} \), and f > f ti then \( r_i^l \geqslant 1 \), where \( 0 < {r_{{t - i}}} < 1 \).Let \( f > {f_{{ti}}} = \frac{{\frac{{\left( {{h_{{i1}}} - {k_i}} \right)\left( {1 - 2{b_i}} \right) + {c_i}{k_i}}}{{{b_i}\left( {{h_{{i1}}} - {k_i}} \right) - {c_i}{k_i}}}}}{{\frac{{2{N_i}}}{{{N_1} + {N_2}}} + \frac{{\left( {{h_{{i1}}} - {k_i}} \right)\left( {1 - 2{b_i}} \right) + {c_i}{k_i}}}{{{b_i}\left( {{h_{{i1}}} - {k_i}} \right) - {c_i}{k_i}}}}} \), where \( \left( {\frac{{2{N_i}}}{{{N_1} + {N_2}}} + \frac{{\left( {1 - 2{b_i}} \right)\left( {{h_{{i1}}} - {k_i}} \right) + {c_i}{k_i}}}{{{b_i}\left( {{h_{{i1}}} - {k_i}} \right) - {c_i}{k_i}}}} \right) > 0 \) since

$$ \matrix{{*{20}{c}} {{b_i} > \frac{{{c_i}{k_i}}}{{{h_{{i1}}} - {k_i}}}.} \hfill \\ { \Rightarrow f\left( {\frac{{2{N_i}}}{{{N_1} + {N_2}}} + \frac{{\left( {1 - 2{b_i}} \right)\left( {{h_{{i1}}} - {k_i}} \right) + {c_i}{k_i}}}{{{b_i}\left( {{h_{{i1}}} - {k_i}} \right) - {c_i}{k_i}}}} \right) > \frac{{\left( {1 - 2{b_i}} \right)\left( {{h_{{i1}}} - {k_i}} \right) + {c_i}{k_i}}}{{{b_i}\left( {{h_{{i1}}} - {k_i}} \right) - {c_i}{k_i}}}} \hfill \\ { \Rightarrow f\left( {\frac{{2{N_i}}}{{{N_1} + {N_2}}} + \frac{{\left( {{h_{{i1}}} - {k_i}} \right)\left( {1 - {b_i}} \right)}}{{{b_i}\left( {{h_{{i1}}} - {k_i}} \right) - {c_i}{k_i}}} - 1} \right) > \frac{{\left( {{h_{{i1}}} - {k_i}} \right)\left( {1 - {b_i}} \right)}}{{{b_i}\left( {{h_{{i1}}} - {k_i}} \right) - {c_i}{k_i}}} - 1} \hfill \\ { \Rightarrow \frac{{\left( {{h_{{i1}}} - {k_i}} \right)\left( {1 - {b_i}} \right)}}{{{b_i}\left( {{h_{{i1}}} - {k_i}} \right) - {c_i}{k_i}}} < 1 + \frac{{2f{N_i}}}{{\left( {{N_1} + {N_2}} \right)\left( {1 - f} \right)}}} \hfill \\ { \Rightarrow {r_{{t - i}}} < 1.} \hfill \\ } $$
(13)

Since, \( {b_i} > \frac{{{c_i}{k_i}}}{{{h_{{i1}}} - {k_i}}} \), clearly, \( {r_{{t - i}}} > 0 \).Let

$$ r_{{ - i}}^l \geqslant {r_{{t - i}}} = \frac{{\left( {{c_i}{k_i} - {b_i}\left( {{h_{{i1}}} - {k_i}} \right)} \right)\frac{{fB{N_i}}}{{{N_1} + {N_2}}} + \left( {{h_{{i1}}} - {k_i}} \right)\left( {1 - f} \right)\frac{B}{2}\left( {1 - {b_i}} \right)}}{{\left( {1 - f} \right)\frac{B}{2}\left( {{b_i}\left( {{h_{{i1}}} - {k_i}} \right) - {c_i}{k_i}} \right)}} $$
(14)

On rearranging the terms,

$$ \matrix{{*{20}{c}} { \Rightarrow \left( {{h_{{i1}}} + \left( {{b_i} + {c_i}} \right)\left( {1 + {r_{{ - i}}}} \right){k_i}} \right)\left( {1 - f} \right)\frac{B}{2} + {k_i}\left( {1 + {c_i}} \right)\left( {1 - f} \right)\frac{B}{2} + \left( {{b_i} + {c_i}} \right){k_i}f\frac{{B{N_i}}}{{{N_1} + {N_2}}} + {b_i}{h_{{i1}}}\left( {\left( {1 + {r_{{ - i}}}} \right)\left( {1 - f} \right)\frac{B}{2} + f\frac{{B{N_i}}}{{{N_1} + {N_2}}}} \right) \geqslant 0} \hfill \\ { \Rightarrow {a_q} - \left( { - {b_q}} \right) + {c_q} \geqslant 0} \hfill \\ { \Rightarrow - 4a_q^2 + 4{a_q}\left( { - {b_q}} \right) + {{\left( { - {b_q}} \right)}^2} - 4{a_q}{c_q} \geqslant {{\left( { - {b_q}} \right)}^2}} \hfill \\ { \Rightarrow {{\left( { - {b_q} - 2{a_q}} \right)}^2} \geqslant {b_q}^2 - 4{a_q}{c_q}} \hfill \\ } $$

We next show that \( - {b_q} - {2}{a_q} > 0 \).

Clearly, \( 2\left( {1 + {c_i}} \right) < \frac{{{h_{{i1}}}}}{{{k_i}}} \) since \( {a_i} + {b_i} + {c_i} = {1} \) and h i1 ≈ 0.001and k i  ≈ .0001.

$$ \left( {2\left( {1 + {c_i}} \right) - \frac{{{h_{{i1}}}}}{{{k_i}}}} \right)\frac{1}{{\left( {{b_i} + {c_i}} \right)}} - 1 - \frac{{2f{N_i}}}{{{N_1} + {N_2}}} < 0 $$

Clearly, \( r_{{ - i}}^l > \left( {2\left( {1 + {c_i}} \right) - \frac{{{h_{{i1}}}}}{{{k_i}}}} \right)\frac{1}{{\left( {{b_i} + {c_i}} \right)}} - 1 - \frac{{2f{N_i}}}{{{N_1} + {N_2}}} \)

$$ \matrix{{*{20}{c}} { \Rightarrow \left( {1 + {r_{{ - i}}}} \right)\left( {{b_i} + {c_i}} \right){k_i}\left( {1 - f} \right)\frac{B}{2} + {h_{{i1}}}\left( {1 - f} \right)\frac{B}{2} > {k_i}\left( {1 + {c_i}} \right)\left( {1 - f} \right)B - \left( {{b_i} + {c_i}} \right){k_i}f\frac{{B{N_i}}}{{{N_1} + {N_2}}}} \hfill \\ { \Rightarrow \left( {{b_i} + {c_i}} \right){k_i}f\frac{{B{N_i}}}{{{N_1} + {N_2}}} + \left( {{h_{{i1}}} + \left( {{b_i} + {c_i}} \right)\left( {1 + {r_{{ - i}}}} \right){k_i}} \right)\left( {1 - f} \right)\frac{B}{2} - {k_i}\left( {1 + {c_i}} \right)\left( {1 - f} \right)B > 0} \hfill \\ { \Rightarrow - {b_q} - 2{a_q} > 0.} \hfill \\ } $$

Thus, \( {\left( { - {b_q} - 2{a_q}} \right)^2} \geqslant {b_q}^2 - 4{a_q}{c_q} \)

$$ \matrix{{*{20}{c}} { \Rightarrow - {b_q} - \sqrt {{{b_q}^2 - 4{a_q}{c_q}}} \geqslant 2{a_q}} \hfill \\ { \Rightarrow r_i^l \geqslant 1} \hfill \\ } $$
(15)

Thus, if \( {b_i} > \frac{{{c_i}{k_i}}}{{{h_{{i1}}} - {k_i}}},r_i^l > {r_{{t - i}}} \), and f > f ti then \( r_i^l > = 1 \). On reversing the inequality in (13), if \( {b_i} > \frac{{{c_i}{k_i}}}{{{h_{{i1}}} - {k_i}}} \), and f ≤ f ti then \( r_i^l < 1 \). If \( {b_i} \leqslant \frac{{{c_i}{k_i}}}{{{h_{{i1}}} - {k_i}}} \) then r ti  < 0, therefore, clearly from (14) and (15), \( r_i^l < 1 \). Hence, we obtain conditions specified in Table 1.

1.3 A.3. Proposition 2: For problem IA with the three sub-populations, Table 2 specifies the optimal f and IA value for the conditions specified in Table 1

Proof

The upper-level utility function is \( IA = \sum\limits_{{i = 1}}^2 {I{A_i}} \)

$$ = B\sum\limits_{\begin{subarray} i, - i = 1 \\ i \ne - i \end{subarray} }^2 {\left[ {\frac{{\left( {1 - r_i^l + r_{{ - i}}^l} \right)\left( {1 - f} \right)B}}{2} + \frac{{fB{N_i}}}{{{N_i} + {N_{{ - i}}}}}} \right]\left( {{h_i}_1 - r_i^l{k_i}} \right)} $$

We next solve the upper-level problem.

$$ IA:\mathop{{\max }}\limits_f \sum\limits_{{i = 1}}^2 {I{A_i}\left( {r_i^l*(f)} \right)}, i = 1,2, $$
(16)
$$ {\text{s}}{\text{.t}}{.}\,{0} \leqslant f \leqslant 1 $$
(17)
$$ r_i^l*(f) = \arg \,\max \left( {{L_i}\left( {r_i^l} \right)} \right) $$
(18)

For the Nash equilibrium, (1,1), clearly, IA is a decreasing function in f. Thus, from Table 1, if \( {b_i} > \frac{{{c_i}{k_i}}}{{{h_{{i1}}} - {k_i}}},i = 1,2 \) then \( f* = \max \left\{ {{f_{{t1}}},{f_{{t2}}}} \right\} \) is optimal, resulting in \( {r_i}* = 1 \) at the lower level and \( IA_M^{*}\left( {r_1^{*},r_1^{*}} \right) = \frac{B}{2}\left( {{h_{{11}}} - {k_1} + {h_{{21}}} - {k_2}} \right) \).

For the Nash equilibrium, \( \left( {r_1^l,r_2^l} \right) \), first derivative of IA with respect to f is given below:

$$ \frac{{dIA}}{{df}} = \frac{{\partial IA}}{{\partial f}} + \frac{{\partial IA}}{{\partial r_1^l}} \cdot \frac{{\partial r_1^l}}{{\partial f}} + \frac{{\partial IA}}{{\partial r_2^l}} \cdot \frac{{\partial r_2^l}}{{\partial f}} \kern3pt \cdot$$

Clearly, the total number of infections prevented decrease with the increase in the preferences \( \left( {r_1^l,r_2^l} \right) \) of the LDs to allocate proportionally plus an increase in the fixed budget (budget to be allocated in proportion to the number of HIV/AIDS infections). That is, IA is decreasing in f, \( r_1^l \), and \( r_2^l,\frac{{\partial IA}}{{\partial f}} < 0,\frac{{\partial IA}}{{\partial r_1^l}} < 0,\,{\text{and}}\,\frac{{\partial IA}}{{\partial r_2^l}} < 0 \). Based on the literature, the preferences \( \left( {r_1^l,r_2^l} \right) \) of the LDs to allocate proportionally increase with the increase in the fixed budget (increase in f). That is, \( r_1^l,r_2^l \) is increasing in f. Therefore, IA is decreasing in f. Thus, we obtain optimal f * and IA* specified in Table 2, based on conditions of Table 1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malvankar-Mehta, M.S., Xie, B. Optimal incentives for allocating HIV/AIDS prevention resources among multiple populations. Health Care Manag Sci 15, 327–338 (2012). https://doi.org/10.1007/s10729-012-9194-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10729-012-9194-y

Keywords

Navigation