Skip to main content
Log in

Phloem transport of amino acids is differentially altered by phosphorus deficiency according to the nitrogen availability in young barley plants

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The phloem transport of amino acids is a key step in the efficient use of nitrogen (N). Despite the importance of this issue, little information is known about the regulation of phloem transport of amino acids in plants with low phosphorus (P) supply and even less in relation to N availability. To this end, we studied not only the assimilate partitioning in young barley plants grown with low N or/and P supply, but also we analyzed the implications of the different isoforms of glutamine synthetase, cytokinin oxidase/dehydrogenase 2 and several senescence-related proteases. Our results demonstrated that low P supply causes an accumulation of different nitrogenous compounds in expanded leaves depending on N availability and an inhibition of the phloem exudation rate of amino acids only in high-N plants, indicating an interaction between N and P in the establishment of N-partitioning. The accumulation of nitrogenous compounds in leaves of low-P plants without the accompaniment in amino acid export to the phloem was not related to an increase in nitrate assimilation pathway neither with the modulation of glutamine synthetase 1_1 expression, as it had been observed for N availability. But, these results could be explained as a consequence of a delay in the transition from sink to source of leaves, thus keeping the older leaves as sink organs, as indicated by the increase in cytokinin oxidase/dehydrogenase 2 expression and the repression of several senescence-related proteases in low-P plants with good availability of N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CKs:

Cytokinins

CKX:

Cytokinin oxidase/dehydrogenase

DW:

Dry weight

GS:

Glutamine synthetase

IPA:

Isopentenyl adenosine

N:

Nitrogen

NR:

Nitrate reductase

P:

Phosphorus

References

  • Bernard SM, Habash DZ (2009) The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytol 182:608–620

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye-binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I, Hengeler C, Marschner H (1994) Changes in phloem export of sucrose in leaves in response to phosphorus, potassium and magnesium deficiency in bean plants. J Exp Bot 45:1251–1257

    Article  CAS  Google Scholar 

  • Caputo C, Barneix AJ (1997) Export of amino acids to the phloem in relation to N supply in wheat. Physiol Plantarum 101:853–860

    Article  CAS  Google Scholar 

  • Caputo C, Barneix AJ (1999) The relationship between sugar and amino acid export to the phloem in young wheat plants. Ann Bot 84:33–38

    Article  CAS  Google Scholar 

  • Caputo C, Criado MV, Roberts IN, Gelso MA, Barneix AJ (2009) Regulation of glutamine synthetase 1 and amino acids transport in the phloem of young wheat plants. Plant Physiol Biochem 47:335–342

    Article  CAS  PubMed  Google Scholar 

  • Cataldo DA, Haroon M, Schrader LE, Youngs VL (1975) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant Anal 6:71–80

    Article  CAS  Google Scholar 

  • Criado V, Roberts IN, Echeverria M, Barneix AJ (2007) Plant growth regulators and induction of leaf senescence in nitrogeN-deprived wheat plants. J Plant Growth Regul 26:301–307

    Article  CAS  Google Scholar 

  • Criado MV, Caputo C, Roberts IN, Castro MA, Barneix AJ (2009) CytokiniN-induced changes of nitrogen remobilization and chloroplast ultrastructure in wheat (Triticum aestivum). J Plant Physiol 166:1775–1785

    Article  CAS  PubMed  Google Scholar 

  • Distelfeld A, Avni R, Fischer AM (2014) Senescence, nutrient remobilization, and yield in wheat and barley. J Exp Bot 65(14):3783–3798

    Article  PubMed  Google Scholar 

  • Fischer AM (2007) Nutrient remobilization during leaf senescence. In: Gan S (eds) Senescence processes in plants, Blackwell, Sheffield, pp 87–107

    Chapter  Google Scholar 

  • Galuszka P, Frébortová J, Werner T, Yamada M, Strnad M, Schmülling T, Frébort I (2004) Cytokinin oxidase/dehydrogenase genes in barley and wheat. Eur J Biochem 271:3990–4002

    Article  CAS  PubMed  Google Scholar 

  • Goodall AJ, Kumar P, Tobin AK (2013) Identification and expression analyses of cytosolic glutamine synthetase genes in barley (Hordeum vulgare L.). Plant Cell Physiol 54:492–505

    Article  CAS  PubMed  Google Scholar 

  • Gourieroux AM, Holzapfel BP, Scollary GR, McCully ME, Canny MJ, Rogiers SY (2016) The amino acid distribution in rachis xylem sap and phloem exudate of Vitis vinifera ‘Cabernet Sauvignon’bunches. Plant Physiol Biochem 105:45–54.

    Article  CAS  PubMed  Google Scholar 

  • Hammond JP, White PJ (2008) Sucrose transport in the phloem: integrating root responses to phosphorus starvation. J Exp Bot 59:93–109

    Article  CAS  PubMed  Google Scholar 

  • Hansen M, Lange M, Friis C, Dionisio G, Holm PB, Vincze E (2007) Antisense-mediated suppression of C-hordein biosynthesis in the barley grain results in correlated changes in the transcriptome, protein profile, and amino acid composition. J Exp Bot 58:3987–3995

    Article  CAS  PubMed  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil, vol 347. 2nd edn. California Agricultural Experiment Station, Berkeley

    Google Scholar 

  • Huang CY, Roessner U, Eickmeier I, Genc Y, Callahan DL, Shirley N, Langridge P, Bacic A (2008) Metabolite profiling reveals distinct changes in carbon and nitrogen metabolism in phosphate-deficient barley plants (Hordeum vulgare L.). Plant Cell Physiol 49:691–703

    Article  CAS  PubMed  Google Scholar 

  • Lewis OAM, Watson EF, Hewitt EJ (1982) Determination of nitrate reductase activity in barley leaves and roots. Ann Bot 49:31–37

    Article  CAS  Google Scholar 

  • Martin A, Lee J, Kichey T, Gerentes D, Zivy M, Tatout C, Dubois F, Balliau T, Valot B, Davanture M, Tercé-Laforgue T, Quilleré I, Coque M, Gallais A, Gonzalez-Moro M-B, Bethencourt L, Habash DZ, Lea PJ, Charcosset A, Perez P, Murigneux A, Sakakibara H, Edwards KJ, Hirel B (2006) Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell 18:3252–3274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massonneau A, Houba-Hérin N, Pethe C, Madzak C, Falque M, Mercy M, Kppecny D, Majira A, Rogowsky P, Laloue M (2004) Maize cytokinin oxidase genes: differential expression and cloning of two new cDNAs. J Exp Bot 55:2549–2557

    Article  CAS  PubMed  Google Scholar 

  • Miflin BJ, Habash DZ (2002) The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J Exp Bot 53:979–987

    Article  CAS  PubMed  Google Scholar 

  • Mok DW, Mok MC (2001) Cytokinin metabolism and action. Annu Rev Plant Biol 52:89–118

    Article  CAS  Google Scholar 

  • Parrott DL, Martin JM, Fischer AM (2010) Analysis of barley (Hordeum vulgare) leaf senescence and protease gene expression: a family C1A cysteine protease is specifically induced under conditions characterized by high carbohydrate, but low to moderate nitrogen levels. New Phytol 187:313–331

    Article  CAS  PubMed  Google Scholar 

  • Roberts IN, Caputo C, Criado MV, Funk C (2012) Senescence-associated proteases in plants. Physiol Plantarum 145:130–139.

    Article  CAS  Google Scholar 

  • Rufty TW, Israel DW, Volk RJ, Qiu J, Sa T (1993) Phosphate regulation of nitrate assimilation in soybean. J Exp Bot 44:879–891

    Article  CAS  Google Scholar 

  • Santiago JP, Tegeder M (2016) Connecting source with sink: the role of Arabidopsis AAP8 in phloem loading of amino acids. Plant Physiol 171:508–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson RJ, Dalling MJ (1981) Nitrogen redistribution during grain growth in wheat (Triticum aestivum L.). Planta 151:447–456

    Article  CAS  PubMed  Google Scholar 

  • Stitt M, Feil R (1999) Lateral root frequency decreases when nitrate accumulates in tobacco transformants with low nitrate reductase activity: consequences for the regulation of biomass partitioning between shoots and root. Plant Soil 215:143–153

    Article  CAS  Google Scholar 

  • Sueyoshi K, Kleinhofs A, Warner RL (1995) Expression of NADH-specific and NAD (P) H-bispecific nitrate reductase genes in response to nitrate in barley. Plant Physiol 107:1303–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabuchi M, Sugiyama K, Ishiyama K, Inoue E, Sato T, Takahashi H, Yamaya T (2005) Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1; 1, a cytosolic glutamine synthetase1;1. Plant J 42:641–651

    Article  CAS  PubMed  Google Scholar 

  • Tegeder M (2014) Transporters involved in source to sink partitioning of amino acids and ureides: opportunities for crop improvement. J Exp Bot 65:1865–1878

    Article  CAS  PubMed  Google Scholar 

  • Veliz CG, Criado MV, Roberts IN, Echeverria M, Prystupa P, Prieto P, Gutierrez Boem FH, Caputo C (2014) Phloem sugars and amino acids as potential regulators of hordein expression in field grown malting barley (Hordeum vulgare L.). J Cereal Sci 60:433–439

    Article  CAS  Google Scholar 

  • Wallsgrove RM, Turner JC, Hall NP, Kendall AC, Bright SW (1987) Barley mutants lacking chloroplast glutamine synthetase-biochemical and genetic analysis. Plant Physiol 83:155–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werner T, Köllmer I, Bartrina I, Holst K, Schmülling T (2006) New insights into the biology of cytokinin degradation. Plant Biol 8:371–381

    Article  CAS  PubMed  Google Scholar 

  • Winter H, Lohaus G, Heldt HW (1992) Phloem transport of amino acids in relation to their cytosolic levels in barley leaves. Plant Physiol 99:996–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu P, Ma L, Hou X, Wang M, Wu Y, Liu F, Deng XW (2003) Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol 132:1260–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yemm EW, Cocking EC (1955) The determination of amino-acids with ninhydrin. Analyst 80:209–213

    Article  CAS  Google Scholar 

  • Yemm EW, Willis AJ (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57:508–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Universidad de Buenos Aires; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Caputo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Criado, M.V., Veliz, C.G., Roberts, I.N. et al. Phloem transport of amino acids is differentially altered by phosphorus deficiency according to the nitrogen availability in young barley plants. Plant Growth Regul 82, 151–160 (2017). https://doi.org/10.1007/s10725-017-0247-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-017-0247-6

Keywords

Navigation