Skip to main content
Log in

Quantitation of ascorbic acid in Arabidopsis thaliana reveals distinct differences between organs and growth phases

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Optimal plant growth is the result of the interaction of a complex network of plant hormones and environmental signals. Ascorbic acid (AsA) is a crucial antioxidant in plants and is involved in the regulation of cell division, cell expansion, photosynthesis and hormone biosynthesis. Quantitative analysis of AsA in Arabidopsis thaliana organs was conducted using HPLC with d-isoascorbic acid (Iso-AsA) as an internal standard. Analysis revealed fluctuations in the levels of AsA in different organs and growth phases when plants were grown under standard conditions. AsA concentrations increased in leaves in direct proportion to leaf size and age. Young siliques (seed set stage) and flowering buds (open and unopened) showed the highest levels of AsA. A relationship was found between the level of AsA and indole acetic acid (IAA) in leaves, stems, flowers, and siliques and the highest level of IAA and AsA were found in the flowers. In contrast, the lowest level of the plant hormone, salicylic acid, was found in the flowers, and the highest quantity measured in the leaves. Consequently, AsA has been found to be a multifunctional molecule that is involved as a key regulator of plant growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agius F, Gonzalez-Lamothe R, Caballero JL, Munoz-Blanco J, Botella MA, Valpuesta V (2003) Engineering increased vitamin C levels in plants by overexpression of a d-galacturonic acid reductase. Nat Biotech 21(2):177–181

    Article  CAS  Google Scholar 

  • An C, Mou Z (2011) Salicylic acid and its function in plant immunityF. J Integr Plant Biol 53(6):412–428. doi:10.1111/j.1744-7909.2011.01043.x

    Article  CAS  PubMed  Google Scholar 

  • Barros L, Ferreira M-J, Queirós B, Ferreira ICFR, Baptista P (2007) Total phenols, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chem 103(2):413–419. doi:10.1016/j.foodchem.2006.07.038

    Article  CAS  Google Scholar 

  • Barth C, Moeder W, Klessig DF, Conklin PL (2004) The timing of senescence and response to pathogens is altered in the ascorbate-deficient Arabidopsis mutant vitamin c-1. Plant Physiol 134(4):1784–1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barth C, De Tullio M, Conklin PL (2006) The role of ascorbic acid in the control of flowering time and the onset of senescence. J Exp Bot 57(8):1657–1665

    Article  CAS  PubMed  Google Scholar 

  • Barth C, Gouzd ZA, Steele HP, Imperio RM (2010) A mutation in GDP-mannose pyrophosphorylase causes conditional hypersensitivity to ammonium, resulting in Arabidopsis root growth inhibition, altered ammonium metabolism, and hormone homeostasis. J Exp Bot 61(2):379–394. doi:10.1093/jxb/erp310

    Article  CAS  PubMed  Google Scholar 

  • Berardini TZ, Reiser L, Li D, Mezheritsky Y, Muller R, Strait E, Huala E (2015) The Arabidopsis information resource: making and mining the “gold standard” annotated reference plant genome. Genesis 53 (8):474–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brossa R, Pintó-Marijuan M, Jiang K, Alegre L, Feldman LJ (2013) Assessing the regulation of leaf redox status under water stress conditions in Arabidopsis thaliana: col-0 ecotype (wild-type and vtc-2), expressing mitochondrial and cytosolic roGFP1. Plant Signaling Behav 8(7):e24781

    Article  Google Scholar 

  • Cao Y, Zhang Z-W, Xue L-W, Du J-B, Shang J, Xu F, Yuan S, Lin H-H (2009) Lack of salicylic acid in Arabidopsis protects plants against moderate salt stress. Z Naturforsch C 64(3–4):231–238

    CAS  PubMed  Google Scholar 

  • Chen C, Letnik I, Hacham Y, Dobrev P, Ben-Daniel B-H, Vanková R, Amir R, Miller G (2014) ASCORBATE PEROXIDASE6 protects Arabidopsis desiccating and germinating seeds from stress and mediates cross talk between reactive oxygen species, abscisic acid, and auxin. Plant Physiol 166(1):370–383

    Article  PubMed  PubMed Central  Google Scholar 

  • Chotyakul N, Pateiro-Moure M, Martínez-Carballo E, Saraiva JA, Torres JA, Pérez-Lamela C (2014) Development of an improved extraction and HPLC method for the measurement of ascorbic acid in cows’ milk from processing plants and retail outlets. Int J Food Sci Technol 49(3):679–688

    Article  CAS  Google Scholar 

  • Conklin PL, Williams EH, Last RL (1996) Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci USA 93(18):9970–9974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conklin PL, Saracco SA, Norris SR, Last RL (2000) Identification of ascorbic acid-deficient Arabidopsis thaliana mutants. Genetics 154(2):847–856

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cosgrove DJ (1999) Enzymes and other agents that enhance cell wall extensibility. Annu Rev Plant Biol 50(1):391–417

    Article  CAS  Google Scholar 

  • Dhar A, Patel K, Shah C (1980) Role of ascorbic acid in auxin induced cell elongation. Histochemistry 69(1):101–109

    Article  CAS  PubMed  Google Scholar 

  • Dobrev PI, Havlíček L, Vágner M, Malbeck J, Kamínek M (2005) Purification and determination of plant hormones auxin and abscisic acid using solid phase extraction and two-dimensional high performance liquid chromatography. J Chromatogr A 1075(1–2):159–166. doi:10.1016/j.chroma.2005.02.091

    Article  CAS  PubMed  Google Scholar 

  • Doner LW, Hicks KB (1981) High-performance liquid chromatographic separation of ascorbic acid, erythorbic acid, dehydroascorbic acid, dehydroerythorbic acid, diketogulonic acid, and diketogluconic acid. Anal Biochem 115(1):225–230. doi:10.1016/0003-2697(81)90550-9

    Article  CAS  PubMed  Google Scholar 

  • Eitenmiller RR, Landen Jr W, Ye L (2016) Vitamin analysis for the health and food sciences (CRC press)

  • Fernie AR, Toth SZ (2015) Identification of the elusive chloroplast ascorbate transporter extends the substrate specificity of the PHT family. Molecular Plant 8(5):674–676

    Article  CAS  PubMed  Google Scholar 

  • Fester T, Fetzer I, Härtig C (2013) A core set of metabolite sink/source ratios indicative for plant organ productivity in Lotus japonicus. Planta 237(1):145–160

    Article  CAS  PubMed  Google Scholar 

  • Forti G, Elli G (1995) The function of ascorbic acid in photosynthetic phosphorylation. Plant Physiol 109(4):1207–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer C, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133(1):21–25. doi:10.1007/bf00386001

    Article  CAS  PubMed  Google Scholar 

  • Franceschi VR, Tarlyn NM (2002) l-ascorbic acid is accumulated in source leaf phloem and transported to sink tissues in plants. Plant Physiol 130(2):649–656. doi:10.1104/pp.007062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallie DR (2013) The role of l-ascorbic acid recycling in responding to environmental stress and in promoting plant growth. J Exp Bot 64(2):433–443. doi:10.1093/jxb/ers330

    Article  CAS  PubMed  Google Scholar 

  • Gietler M, Nykiel M, Zagdańska BM (2016) Changes in the reduction state of ascorbate and glutathione, protein oxidation and hydrolysis leading to the development of dehydration intolerance in Triticum aestivum L. seedlings. Plant Growth Regul 79(3):287–297. doi:10.1007/s10725-015-0133-z

    Article  CAS  Google Scholar 

  • Grace MH, Yousef GG, Gustafson SJ, Truong V-D, Yencho GC, Lila MA (2014) Phytochemical changes in phenolics, anthocyanins, ascorbic acid, and carotenoids associated with sweetpotato storage and impacts on bioactive properties. Food Chem 145(0):717–724. doi:10.1016/j.foodchem.2013.08.107

    Article  CAS  PubMed  Google Scholar 

  • Green MA, Fry SC (2005) Vitamin C degradation in plant cells via enzymatic hydrolysis of 4-O-oxalyl-l-threonate. Nature 433(7021):83–87

    Article  CAS  PubMed  Google Scholar 

  • Hara M, Furukawa J, Sato A, Mizoguchi T, Miura K (2012) Abiotic stress and role of salicylic acid in plants. In: Abiotic stress responses in plants. Springer, pp 235–251

  • Hewitt EJ, Dickes GJ (1961) Spectrophotometric measurements on ascorbic acid and their use for the estimation of ascorbic acid and dehydroascorbic acid in plant tissues. Biochem J 78(2):384–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C, Wang D, Sun L, Wei L (2016) Effects of exogenous salicylic acid on the physiological characteristics of Dendrobium officinale under chilling stress. Plant Growth Regul 79(2):199–208. doi:10.1007/s10725-015-0125-z

    Article  CAS  Google Scholar 

  • Ivanov B (2014) Role of ascorbic acid in photosynthesis. BioChemistry 79(3):282–289

    CAS  PubMed  Google Scholar 

  • Klimczak I, Gliszczynska-Swigło A (2015) Comparison of UPLC and HPLC methods for determination of vitamin C. Food Chem 175:100–105. doi:10.1016/j.foodchem.2014.11.104

    Article  CAS  PubMed  Google Scholar 

  • Kotchoni SO, Larrimore KE, Mukherjee M, Kempinski CF, Barth C (2009) Alterations in the endogenous ascorbic acid content affect flowering time in Arabidopsis. Plant Physiol 149(2):803–815. doi:10.1104/pp.108.132324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kutnink MA, Hawkes WC, Schaus EE, Omaye ST (1987) An internal standard method for the unattended high-performance liquid chromatographic analysis of ascorbic acid in blood components. Anal Biochem 166(2):424–430

    Article  CAS  PubMed  Google Scholar 

  • Lisko KA, Torres R, Harris RS, Belisle M, Vaughan MM, Jullian B, Chevone BI, Mendes P, Nessler CL, Lorence A (2013) Elevating vitamin C content via overexpression of myo-inositol oxygenase and L-gulono-1, 4-lactone oxidase in Arabidopsis leads to enhanced biomass and tolerance to abiotic stresses. In Vitro Cell Dev Biol Plant 49(6):643–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorence A, Chevone BI, Mendes P, Nessler CL (2004) myo-Inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol 134(3):1200–1205. doi:10.1104/pp.103.033936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovelock DA (2013) Salicylic acid and its role in defence against plasmodiophora brassicae. Deakin University

  • Meinke DW, Cherry JM, Dean C, Rounsley SD, Koornneef M (1998) Arabidopsis thaliana: a model plant for genome analysis. Science 282(5389):662–682. doi:10.1126/science.282.5389.662

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Suzuki N, Rizhsky L, Hegie A, Koussevitzky S, Mittler R (2007) Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. Plant Physiol 144(4):1777–1785. doi:10.1104/pp.107.101436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mintoff S, Rookes J, Cahill D (2015) Sub-lethal UV-C radiation induces callose, hydrogen peroxide and defence-related gene expression in Arabidopsis thaliana. Plant Biol 17(3):703–711

    Article  CAS  PubMed  Google Scholar 

  • Miura K, Tada Y (2014) Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci 5. doi:10.3389/fpls.2014.00004

  • Mukherjee M, Larrimore KE, Ahmed NJ, Bedick TS, Barghouthi NT, Traw MB, Barth C (2010) Ascorbic acid deficiency in Arabidopsis induces constitutive priming that is dependent on hydrogen peroxide, salicylic acid, and the NPR1 gene. Mol Plant Microbe Interact 23(3):340–351. doi:10.1094/mpmi-23-3-0340

    Article  CAS  PubMed  Google Scholar 

  • Munne-Bosch S, Alegre L (2002) Interplay between ascorbic acid and lipophilic antioxidant defences in chloroplasts of water-stressed Arabidopsis plants. FEBS Lett 524(1–3):145–148. doi:10.1016/S0014-5793(02)03041-7

    Article  CAS  PubMed  Google Scholar 

  • Munyaka AW, Oey I, Van Loey A, Hendrickx M (2010) Application of thermal inactivation of enzymes during vitamin C analysis to study the influence of acidification, crushing and blanching on vitamin C stability in Broccoli (Brassica oleracea L var. italica). Food Chem 120(2):591–598

    Article  CAS  Google Scholar 

  • Nojavan S, Khalilian F, Kiaie FM, Rahimi A, Arabanian A, Chalavi S (2008) Extraction and quantitative determination of ascorbic acid during different maturity stages of Rosa canina L. fruit. J Food Compos Anal 21(4):300–305. doi:10.1016/j.jfca.2007.11.007

    Article  CAS  Google Scholar 

  • Normanly J (2010) Approaching cellular and molecular resolution of auxin biosynthesis and metabolism. Cold Spring Harbor Perspect Biol 2(1):a001594

    Article  Google Scholar 

  • Nováková L, Solich P, Solichová D (2008) HPLC methods for simultaneous determination of ascorbic and dehydroascorbic acids. Trends Anal Chem 27(10):942–958. doi:10.1016/j.trac.2008.08.006

    Article  Google Scholar 

  • Pan X, Welti R, Wang X (2010) Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography–mass spectrometry. Nature Protoc 5(6):986–992

    Article  CAS  Google Scholar 

  • Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovic S, Verrier PJ, Noctor G, Foyer CH (2003) Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. Plant Cell 15(4):939–951. doi:10.1105/tpc.010538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavet V, Olmos E, Kiddle G, Mowla S, Kumar S, Antoniw J, Alvarez ME, Foyer CH (2005) Ascorbic acid deficiency activates cell death and disease resistance responses in Arabidopsis. Plant Physiol 139(3):1291–1303. doi:10.1104/pp.105.067686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfluger J, Zambryski P (2004) The role of SEUSS in auxin response and floral organ patterning. Development 131(19):4697–4707. doi:10.1242/dev.01306

    Article  CAS  PubMed  Google Scholar 

  • Queval G, Noctor G (2007) A plate reader method for the measurement of NAD, NADP, glutathione, and ascorbate in tissue extracts: application to redox profiling during Arabidopsis rosette development. Anal Biochem 363(1):58–69. doi:10.1016/j.ab.2007.01.005

    Article  CAS  PubMed  Google Scholar 

  • Rekha C, Poornima G, Manasa M, Abhipsa V, Devi JP, kumar htv, kekuda trp (2012) Ascorbic acid, total phenol content and antioxidant activity of fresh juices of four ripe and unripe citrus fruits. Chem Sci Transactions 1(2):303–310

    Article  Google Scholar 

  • Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62(10):3321–3338. doi:10.1093/jxb/err031

    Article  CAS  PubMed  Google Scholar 

  • Sauberlich HE, Tamura T, Craig CB, Freeberg LE, Liu T (1996) Effects of erythorbic acid on vitamin C metabolism in young women. Am J Clin Nutr 64(3):336–346

    CAS  PubMed  Google Scholar 

  • Scartezzini P, Antognoni F, Raggi MA, Poli F, Sabbioni C (2006) Vitamin C content and antioxidant activity of the fruit and of the Ayurvedic preparation of Emblica officinalis Gaertn. J Ethnopharmacol 104(1–2):113–118. doi:10.1016/j.jep.2005.08.065

    Article  CAS  PubMed  Google Scholar 

  • Senn ME, Gergoff Grozeff GE, Alegre ML, Barrile F, De Tullio MC, Bartoli CG (2016) Effect of mitochondrial ascorbic acid synthesis on photosynthesis. Plant Physiol Biochem 104:29–35. doi:10.1016/j.plaphy.2016.03.012

    Article  CAS  PubMed  Google Scholar 

  • Shan H, Chen S, Jiang J, Chen F, Chen Y, Gu C, Li P, Song A, Zhu X, Gao H (2012) Heterologous expression of the chrysanthemum R2R3-MYB transcription factor CmMYB2 enhances drought and salinity tolerance, increases hypersensitivity to ABA and delays flowering in Arabidopsis thaliana. Mol Biotechnol 51(2):160–173

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N (1996) Botanical briefing: the function and metabolism of ascorbic acid in plants. Ann Bot (Lond) 78(6):661–669

    Article  CAS  Google Scholar 

  • Smirnoff N (2000) Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr Opin Plant Biol 3(3):229–235

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. Crit Rev Biochem Mol Biol 35(4):291–314

    Article  CAS  PubMed  Google Scholar 

  • Spinola V, Mendes B, Câmara JS, Castilho PC (2012) An improved and fast UHPLC-PDA methodology for determination of l-ascorbic and dehydroascorbic acids in fruits and vegetables. Evaluation of degradation rate during storage. Anal Bioanal Chem 403(4):1049–1058

    Article  CAS  PubMed  Google Scholar 

  • Spinola V, Mendes B, Câmara JS, Castilho PC (2013) Effect of time and temperature on vitamin C stability in horticultural extracts. UHPLC-PDA vs iodometric titration as analytical methods. LWT-Food Sci Technol 50(2):489–495

    Article  CAS  Google Scholar 

  • Talla S, Riazunnisa K, Padmavathi L, Sunil B, Rajsheel P, Raghavendra AS (2011) Ascorbic acid is a key participant during the interactions between chloroplasts and mitochondria to optimize photosynthesis and protect against photoinhibition. J Biosci 36(1):163–173

    Article  CAS  PubMed  Google Scholar 

  • Tarrago-Trani MT, Phillips KM, Cotty M (2012) Matrix-specific method validation for quantitative analysis of vitamin C in diverse foods. J Food Compos Anal 26(1):12–25

    Article  CAS  Google Scholar 

  • Tedone L, Hancock RD, Alberino S, Haupt S, Viola R (2004) Long-distance transport of l-ascorbic acid in potato. BMC Plant Biol 4(1):16

    Article  PubMed  PubMed Central  Google Scholar 

  • Thingnaes E, Torre S, Ernstsen A, Moe R (2003) Day and night temperature responses in Arabidopsis: effects on gibberellin and auxin content, cell size, morphology and flowering time. Ann Bot 92(4):601–612. doi:10.1093/aob/mcg176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiruvengadam M, Baskar V, Kim S-H, Chung I-M (2016) Effects of abscisic acid, jasmonic acid and salicylic acid on the content of phytochemicals and their gene expression profiles and biological activity in turnip (Brassica rapa ssp. rapa). Plant Growth Regul:1–14. doi:10.1007/s10725-016-0178-7

  • Vanacker H, Lu H, Rate DN, Greenberg JT (2001) A role for salicylic acid and NPR1 in regulating cell growth in Arabidopsis. Plant J 28(2):209–216

    Article  CAS  PubMed  Google Scholar 

  • Veljovic-Jovanovic SD, Pignocchi C, Noctor G, Foyer CH (2001) Low Ascorbic Acid in the vtc-1 mutant of Arabidopsis Is associated with decreased growth and intracellular redistribution of the antioxidant system. Plant Physiol 127(2):426–435. doi:10.1104/pp.010141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J-J, Guo H-S (2015) Cleavage of INDOLE-3-ACETIC ACID INDUCIBLE28 mRNA by MicroRNA847 upregulates auxin signaling to modulate cell proliferation and lateral organ growth in Arabidopsis. The Plant Cell 27(3):574–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Xiao Y, Chen W, Tang K, Zhang L (2010) Increased Vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis. J Integr Plant Biol 52(4):400–409. doi:10.1111/j.1744-7909.2010.00921.x

    Article  CAS  PubMed  Google Scholar 

  • Weraduwage SM, Chen J, Anozie FC, Morales A, Weise SE, Sharkey TD (2015) The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana. Front Plant Sci 6:167. doi:10.3389/fpls.2015.00167

    Article  PubMed  PubMed Central  Google Scholar 

  • Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393(6683):365–369

    Article  CAS  PubMed  Google Scholar 

  • Wheeler G, Ishikawa T, Pornsaksit V, Smirnoff N (2015) Evolution of alternative biosynthetic pathways for vitamin C following plastid acquisition in photosynthetic eukaryotes. Elife 4:e06369

    PubMed Central  Google Scholar 

  • Wolucka BA, Van Montagu M (2003) GDP-mannose 3′,5′-epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. J Biol Chem 278(48):47483–47490

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Tamaoki M, Shikano T, Nakajima N, Ogawa D, Ioki M, Aono M, Kubo A, Kamada H, Inoue Y, Saji H (2006) Cytosolic Dehydroascorbate reductase is important for ozone tolerance in Arabidopsis thaliana. Plant Cell Physiol 47(2):304–308. doi:10.1093/pcp/pci246

    Article  CAS  PubMed  Google Scholar 

  • Zapata S, Dufour J-P (1992) Ascorbic, dehydroascorbic and Isoascorbic Acid simultaneous determinations by reverse phase ion interaction HPLC. J Food Sci 57(2):506–511. doi:10.1111/j.1365-2621.1992.tb05527.x

    Article  CAS  Google Scholar 

  • Zechmann B, Stumpe M, Mauch F (2011) Immunocytochemical determination of the subcellular distribution of ascorbate in plants. Planta 233(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Zhu M, Zhang J, Su Y (2014) Improved on-line high performance liquid chromatography method for detection of antioxidants in Eucommia ulmoides Oliver flower. J Biosci Bioeng 118(1):45–49. doi:10.1016/j.jbiosc.2013.12.009

    Article  CAS  PubMed  Google Scholar 

  • Zhu F, Yuan S, Wang S-D, Xi D-H, Lin H-H (2011) The higher expression levels of dehydroascorbate reductase and glutathione reductase in salicylic acid-deficient plants may contribute to their alleviated symptom infected with RNA viruses. Plant Signaling Behav 6(9):1402–1404. doi:10.4161/psb.6.9.16538

    Article  CAS  Google Scholar 

  • Zhu L, Guo J, Zhu J, Zhou C (2014) Enhanced expression of EsWAX1 improves drought tolerance with increased accumulation of cuticular wax and ascorbic acid in transgenic Arabidopsis. Plant Physiol Biochem 75:24–35. doi:10.1016/j.plaphy.2013.11.028

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Noura Kka was supported by a scholarship from the higher committee for education development in Iraq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noura Kka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2783 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kka, N., Rookes, J. & Cahill, D. Quantitation of ascorbic acid in Arabidopsis thaliana reveals distinct differences between organs and growth phases. Plant Growth Regul 81, 283–292 (2017). https://doi.org/10.1007/s10725-016-0205-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-016-0205-8

Keywords

Navigation