Skip to main content

Advertisement

Log in

Towards plant salinity tolerance-implications from ion transporters and biochemical regulation

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Crop production is adversely affected by soil salinization and therefore, development of crop cultivars with salt tolerance is crucial for better utilization of saline soil and enhancement of sustainable agricultural productivity. High salt concentration induces various physiological and biochemical responses in plants, while plants employ mechanisms in adaptation to salinity stress at cellular, metabolic and whole-plant levels, including stress signalling, ion balancing, osmotic regulation and antioxidant protection. In this review, we discuss the signalling pathways and key mechanisms of Na+ detoxification mediated by ion transporters and antiporters, and make an overview of practical strategies and methodologies for functional characterization of high-affinity potassium transporters. In addition, recent research advances in improvement of plant salt tolerance through biochemical regulation, particularly alleviating salt stress by exogenous application of gibberellins and nitric oxide, are reviewed. We also propose key research perspectives that remain to be addressed in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008) The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20:2117–2129

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Benito B, Haro R, Amtmann A, Cuin TA, Dreyer I (2014) The twins K+ and Na+ in plants. J Plant Physiol 171:723–731

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya D, Yu SM, Lee YH (2014) Volatile compounds from Alcaligenes faecalis JBCS1294 confer salt tolerance in Arabidopsis thaliana through the auxin and gibberellin pathways and differential modulation of gene expression in root and shoot tissues. Plant Growth Regul. doi:10.1007/s10725-014-9953-5

    Google Scholar 

  • Charrier A, Lelièvre E, Limami AM, Planchet E (2013) Medicago truncatula stress associated protein 1 gene (MtSAP1) overexpression confers tolerance to abiotic stress and impacts proline accumulation in transgenic tobacco. J Plant Physiol 170:874–877

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Newman IA, Zhou M, Mendham NJ, Zhang G, Shabala SN (2005) Screening plants for salt tolerance by measuring K+ flux: a case study for barley. Plant, Cell Environ 28:1230–1246

    Article  CAS  Google Scholar 

  • Chen Z, Cuin TA, Zhou M, Towmey A, Naidu BP, Shabala S (2007a) Compatible solute accumulation and stress mitigating effects in barley genotypes contrasting in their salt tolerance. J Exp Bot 28:4245–4255

    Article  Google Scholar 

  • Chen Z, Pottosin II, Cuin TA, Fuglsang AT, Tester M, Jha D, Zepeda-Jazo I, Zhou M, Palmgren MG, Newman IA, Shabala S (2007b) Root plasma membrane transporters controlling K+/Na+ homeostasis in salt stressed barley. Plant Physiol 145:1714–1725

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen Z, Zhou M, Newman IA, Mendham NJ, Zhang G, Shabala SN (2007c) Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance. Funct Plant Biol 34:150–162

    Article  CAS  Google Scholar 

  • Coello P, Hey SJ, Halford NG (2011) The sucrose non-fermenting-1-related (SnRK) family of protein kinases: potential for manipulation to improve stress tolerance and increase yield. J Exp Bot 62:883–893

    Article  CAS  PubMed  Google Scholar 

  • Colebrook EH, Thomas SG, Phillips AL, Hedden P (2014) The role of gibberellin signalling in plant responses to abiotic stress. J Exp Biol 217:67–75

    Article  CAS  PubMed  Google Scholar 

  • Dai F, Nevo E, Wu DZ, Comadran J, Zhou MX, Qiu L, Chen ZH, Beiles A, Chen GX, Zhang GP (2012) Tibet is one of the centers of domestication of cultivated barley. Proc Natl Acad Sci USA 42:16969–16973

    Article  Google Scholar 

  • Ellis RP, Forster BP, Gordon DC, Handley LL, Keith RP, Lawrence P, Meyer R, Powell W, Robinson D, Scrimgeour CM, Young G, Thomas WT (2002) Phenotype/genotype associations for yield and salt tolerance in a barley mapping population segregating for two dwarfing genes. J Exp Bot 53:1163–1176

    Article  CAS  PubMed  Google Scholar 

  • Fan HF, Du CX, Guo SR (2013) Nitric oxide enhances salt tolerance in cucumber seedlings by regulating free polyamine content. Environ Exp Bot 86:52–59

    Article  CAS  Google Scholar 

  • FAO (2009) Food and Agriculture Organisation of the United Nations. www.fao.org/askfao/topicsList.do?mainAreaId=20263

  • Fricke W, Akhiyarova G, Veselov D, Kudoyarova G (2004) Rapid and tissue-specific changes in ABA and in growth rate response to salinity in barley leaves. J Exp Bot 55:1115–1123

    Article  CAS  PubMed  Google Scholar 

  • Fukuda A, Tanaka Y (2006) Effects of ABA, auxin and gibberellin on the expression of genes for vacuolar H+-inorganic pyrophosphatase, H+-ATPase subunit A, and Na+/H+ antiporter in barley. Plant Physiol Bioch 44:351–358

    Article  CAS  Google Scholar 

  • Garg B, Puranik S, Misra S, Nath Tripathi B, Prasad M (2013) Transcript profiling identifies novel transcripts with unknown functions as primary response components to osmotic stress in wheat (Triticum aestivum L.). Plant Cell Tissue Organ Cult 113:91–101

    Article  CAS  Google Scholar 

  • Gobert A, Park G, Amtmann A, Sanders D, Maathuis FJ (2006) Arabidopsis thaliana cyclic nucleotide gated channel 3 forms a non-selective ion transporter involved in germination and cation transport. J Exp Bot 57:791–800

    Article  CAS  PubMed  Google Scholar 

  • Golldack D, Su H, Quigley F, Kamasani UR, Muñoz-Garay C, Balderas E, Popova OV, Bennett J, Bohnert HJ, Pantoja O (2002) Characterization of a HKT-type transporter in rice as a general alkali cation transporter. Plant J 31:529–542

    Article  CAS  PubMed  Google Scholar 

  • Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci. doi:10.3389/fpls.2014.00151

    PubMed Central  PubMed  Google Scholar 

  • Groß F, Durner J, Gaupels F (2013) Nitric oxide, antioxidants and prooxidants in plant defence responses. Front Plant Sci. doi:10.3389/fpls.2013.00419

    Google Scholar 

  • Gurmani AA, Bano A, Khan SU, Din J, Zhang JL (2011) Alleviation of salt stress by seed treatment with abscisic acid (ABA), 6-benzylaminopurine (BA) and chlormequat chloride (CCC) optimizes ion and organic matter accumulation and increases yield of rice (Oryza sativa L.). Aust J Crop Sci 5:1278–1285

    CAS  Google Scholar 

  • Hamayun M, Khan SA, Khan AL, Shin JH, Ahmad B, Shin DH, Lee IJ (2010) Exogenous gibberellic acid reprograms soybean to higher growth and salt stress tolerance. J Agric Food Chem 58:7226–7232

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Jin X, Wu F, Zhang G (2011) Genotypic differences in callus induction and plant regeneration from mature embryos of barley (Hordeum vulgare L.). J Zhejiang Univ Sci B 12:399–407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haro R, Bañuelos MA, Senn ME, Barrero-Gil J, Rodríguez-Navarro A (2005) HKT1 mediates sodium uniport in roots. Pitfalls in the expression of HKT1 in yeast. Plant Physiol 139:1495–1506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • He T, Cramer GR (1996) Abscisic acid concentrations are correlated with leaf area reductions in two salt-stressed rapidcycling Brassica species. Plant Soil 179:25–33

    Article  CAS  Google Scholar 

  • Horie T, Costa A, Kim TH, Han MJ, Horie R, Leung HY, Miyao A, Hirochika H, An G, Schroeder JI (2007) Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. EMBO J 26:3003–3014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horie T, Brodsky DE, Costa A, Kaneko T, Lo Schiavo F, Katsuhara M, Schroeder JI (2011) K+ transport by the OsHKT2;4 transporter from rice with atypical Na+ transport properties and competition in permeation of K+ over Mg2+ and Ca2+ ions. Plant Physiol 156:1493–1507

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang S, Spielmeyer W, Lagudah ES, Munns R (2008) Comparative mapping of HKT genes in wheat, barley, and rice, key determinants of Na+ transport and salt tolerance. J Exp Bot 59:927–937

    Article  CAS  PubMed  Google Scholar 

  • Jabnoune M, Espeout S, Mieulet D, Fizames C, Verdeil JL, Conejero G, Rodríguez-Navarro A, Sentenac H, Guiderdoni E, Abdelly C, Very AA (2009) Diversity in expression patterns and functional properties in the rice HKT transporter family. Plant Physiol 150:1955–1971

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jamil M, Rha ES (2007) Gibberellic acid (GA3) enhance seed water uptake, germination and early seedling growth in sugar beet under salt stress. Pak J Biol Sci 10:654–658

    Article  CAS  PubMed  Google Scholar 

  • Javid MG, Sorooshzadeh Ali, Mohammad SA, Sanavy SAMM, Allahdadi I, Moradi F, Sorooshzadeh A (2011) Effects of the exogenous application of auxin and cytokinin on carbohydrate accumulation in grains of rice under salt stress. Plant Growth Regul 65:305–313

    Article  Google Scholar 

  • Jiang Q, Roche D, Monaco TA, Durham S (2006) Gas exchange, chlorophyll fluorescence parameters and carbon isotope discrimination of 14 barley genetic lines in response to salinity. Field Crop Res 96:269–278

    Article  Google Scholar 

  • Johri MM, D’Souza JS (2003) Hormonal regulation of moss protonema development and the possible origin of plant hormonal responses in bryophytes. Indian J Biotechnol 2:9–16

    CAS  Google Scholar 

  • Jones HD (2005) Wheat transformation: current technology and applications to grain development and composition. J Cereal Sci 41:137–147

    Article  CAS  Google Scholar 

  • Kang DJ, Seo YJ, Lee JD, Ishii R, Kim K, Shin D, Park S, Jang S, Lee IJ (2005) Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salt-tolerant and salt-sensitive rice cultivars. J Agro Crop Sci 191:273–282

    Article  CAS  Google Scholar 

  • Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, Martinoia E (2011) Plant ABC Transporters. Arabidopsis book/Am Soc Plant Biol 9:e0153

    Google Scholar 

  • Kant S, Kant P, Raveh E, Barak S (2006) Evidence that differential gene expression between the halophyte Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila. Plant, Cell Environ 29:1220–1234

    Article  CAS  Google Scholar 

  • Lan WZ, Wang W, Wang SM, Li LG, Buchanan BB, Lin HX, Gao JP, Luan S (2010) A rice high-affinity potassium transporter (HKT) conceals a calcium-permeable cation channel. Proc Natl Acad Sci USA 107:7089–7094

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee EK, Kwon M, Ko J-H, Yi H, Hwang MG, Chang S, Cho MH (2004) Binding of sulfonylurea by AtMRP5, an Arabidopsis multidrug resistance-related protein that functions in salt tolerance. Plant Physiol 134:528–538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu W, Fairbairn DJ, Reid RJ, Schachtman DP (2001) Characterization of two HKT1 homologues from Eucalyptus camaldulensis that display intrinsic osmosensing capability. Plant Physiol 127:283–294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu S, Dong Y, Xu L, Kong J (2014) Effects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of cotton seedlings. Plant Growth Regul 73:67–78

    Article  CAS  Google Scholar 

  • Maggio A, Barbieri G, Raimondi G, De Pascale SD (2010) Contrasting effects of GA3 treatments on tomato plants exposed to increasing salinity. J Plant Growth Regul 29:63–72

    Article  CAS  Google Scholar 

  • Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K (2008) The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. Plant J 56:613–626

    Article  CAS  PubMed  Google Scholar 

  • Mäser P, Hosoo Y, Goshima S, Horie T, Eckelman B, Yamada K, Yoshida K, Bakker EP, Shinmyo A, Oiki S, Schroeder JI, Uozumi N (2002) Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants. Proc Natl Acad Sci USA 99:6428–6433

    Article  PubMed Central  PubMed  Google Scholar 

  • Mian A, Oomen RJFJ, Isayenkov S, Sentenac H, Maathuis FJM, Véry AA (2011) Over-expression of an Na+- and K+-permeable HKT transporter in barley improves salt tolerance. Plant J 68:468–479

    Article  CAS  PubMed  Google Scholar 

  • Mokhamed A, Raldugina G, Kholodova V, Kuznetsov VI (2006) Osmolyte accumulation in different rape genotypes under sodium chloride salinity. Russ J Plant Physiol 53:649–655

    Article  CAS  Google Scholar 

  • Molassiotis A, Tanou G, Diamantidis G (2010) No says more than ‘YES’ to salt tolerance: salt priming and systemic nitric oxide signaling in plants. Plant Signal Behav 5:209–212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Møller IS, Tester M (2007) Salinity tolerance of Arabidopsis: a good model for cereals? Trends Plant Sci 12:534–540

    Article  PubMed  Google Scholar 

  • Møller IS, Gilliham M, Jha D, Mayo GM, Roy SJ, Coates JC, Haseloff J, Tester M (2009) Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis. Plant Cell 21:2163–2178

    Article  PubMed Central  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Byrt CS, Hare RA, Tyerman SD, Tester M, Plett D, Gilliham M (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol 30:360–364

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and Grasses. Plant Physiol 149:88–95

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Niu S, Gao Q, Li Z, Chen X, Lie W (2014) The role of gibberellin in the CBF1-mediated stress-response pathway. Plant Mol Biol Rep 32:852–863

    Article  CAS  Google Scholar 

  • Oomen RJFJ, Benito B, Sentenac H, Rodríguez-Navarro A, Talón M, Véry AA, Domingo C (2012) HKT2;2/1, a K+-permeable transporter identified in a salt-tolerant rice cultivar through surveys of natural genetic polymorphism. Plant J 71:750–762

    Article  CAS  PubMed  Google Scholar 

  • Pang Q, Chen S, Dai S, Chen Y, Wang Y, Yan X (2010) Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. J Proteome Res 9:2584–2599

    Article  CAS  PubMed  Google Scholar 

  • Pardo JM (2010) Biotechnology of water and salinity stress tolerance. Curr Opin Biotechnol 21:185–196

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Alfocea F, Ghanem ME, Gómez-Cadenas A, Dodd IC (2011) Omics of root-to-shoot signalling under salt stress and water deficit. OMICS 15:893–901

    Article  PubMed  Google Scholar 

  • Platten JD, Cotsaftis O, Berthomieu P, Bohnert H, Davenport RJ, Fairbairn DJ, Horie T, Leigh RA, Lin H, Luan S, Mäser P, Omar Pantoja O, Rodríguez-Navarro A, Schachtman DP, Schroeder JI, Sentenac H, Uozumi N, Vé ry A, Zhu J, Dennis ES, Tester M (2006) Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends Plant Sci 11:372–374

    Article  CAS  PubMed  Google Scholar 

  • Popova LP, Stoinova ZG, Maslenkova LT (1995) Involvement of abscisic acid in photosynthetic process in Hordeum vulgare L. during salinity stress. J Plant Growth Regul 14:211–218

    Article  CAS  Google Scholar 

  • Qiu L, Wu DZ, Ali S, Cai SG, Dai F, Jin X, Wu F, Zhang G (2011) Evaluation of salinity tolerance and analysis of allelic function of HvHKT1;1 and HvHKT2 in Tibetan wild barley. Theor Appl Genet 122:695–703

    Article  CAS  PubMed  Google Scholar 

  • Rahnama A, James RA, Poustini K, Munns R (2010) Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Funct Plant Biol 37:255–263

    Article  Google Scholar 

  • Rodriguez-Navarro A (2000) Potassium transport in fungi and plants. Biochem Biophys Acta 1469:1–30

    CAS  PubMed  Google Scholar 

  • Rodríguez-Navarro A, Rubio F (2006) High-affinity potassium and sodium transport systems in plants. J Exp Bot 57:1149–1160

    Article  PubMed  Google Scholar 

  • Roychoudhury A, Paul S, Basu S (2013) Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Rep 32:985–1006

    Article  CAS  PubMed  Google Scholar 

  • Rus A, Yokoi S, Sharkhuu A, Reddy M, Lee BH, Matsumoto TK, Koiwa H, Zhu JK, Bressan RA, Hasegawa PM (2001) AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proc Natl Acad Sci USA 98:14150–14155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rus A, Lee BH, Muñoz-Mayor A, Sharkhuu A, Miura K, Zhu JK, Bressan RA, Hasegawa PM (2004) AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiol 136:2500–2511

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sassi A, Mieulet D, Khan I, Moreau B, Gaillard I, Sentenac H, Very AA (2012) The rice monovalent cation transporter OsHKT2;4, revisited ionic selectivity. Plant Physiol 160:498–510

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shabala S, Shabala L, van Volkenburgh E (2003) Effect of calcium on root development and root ion fluxes in salinised barley seedlings. Funct Plant Biol 30:507–514

    Article  CAS  Google Scholar 

  • Shabala S, Shabala L, Cuin T, Pang J, Percey W, Chen ZH, Conn S, Eing C, Wegner L (2010) Xylem ionic relations and salinity tolerance in barley. Plant J 61:839–853

    Article  CAS  PubMed  Google Scholar 

  • Shan DP, Huang JG, Yang YT, Guo YH, Wu CA, Yang GD, Gao Z, Zheng CC (2007) Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid. New Phytol 176:70–81

    Article  CAS  PubMed  Google Scholar 

  • Shi HT, Li RJ, Cai W, Liu W, Wang CL, Lu YT (2012) Increasing nitric oxide content in Arabidopsis thaliana by expressing rat neuronal nitric oxide synthase resulted in enhanced stress tolerance. Plant Cell Physiol 53:344–357

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Basalah MO (2011) Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma 248:447–455

    Article  CAS  PubMed  Google Scholar 

  • Sreenivasulu N, Harshavardhan VT, Govind G, Seiler C, Kohli A (2012) Contrapuntal role of ABA: does it mediate stress tolerance or plant growth retardation under long-term drought stress? Gene 506:265–273

    Article  CAS  PubMed  Google Scholar 

  • Sunarpi Horie T, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan WY, Leung HY, Hattori K, Konomi M, Osumi M, Yamagami M, Schroeder JI, Uozumi N (2005) Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J 44:928–938

    Article  CAS  PubMed  Google Scholar 

  • Suo H, Ma Q, Ye K, Yang C, Tang Y, Hao J, Zhang ZJ, Feng Y, Chen M, Nian H (2012) Overexpression of AtDREB1A causes a severe dwarf phenotype by decreasing endogenous gibberellin levels in soybean. PLoS ONE 7:e45568

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tabur S, Demir K (2010) Role of some growth regulators on cytogenetic activity of barley under salt stress. Plant Growth Regul 60:99–104

    Article  CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Uozumi N, Kim EJ, Rubio F, Yamaguchi T, Muto S, Tsuboi A, Bakker EP, Nakamura T, Schroeder JI (2000) The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiol 122:1249–1260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang H, Qi Q, Schorr P, Cutler AJ, Crosby WL, Fowke LC (1998) ICK1, a cyclin-dependent protein kinase inhibitor from Arabidopsis thaliana interacts with both Cdc2a and CycD3, and its expression is induced by abscisic acid. Plant J 15:501–510

    Article  PubMed  Google Scholar 

  • Wang TT, Ren ZJ, Liu ZQ, Feng X, Guo RQ, Li BG, Li LG, Jing HC (2014) SbHKT1;4, a member of the high-affinity potassium transporter gene family from Sorghum bicolor, functions to maintain optimal Na+/K+ balance under Na+ stress. J Integr Plant Biol 56:315–332

    Article  CAS  PubMed  Google Scholar 

  • Wei P, Chen D, Jing R, Zhao C, Yu B (2014) Ameliorative effects of foliar methanol spraying on salt injury to soybean seedlings differing in salt tolerance. Plant Growth Regul. doi:10.1007/s10725-014-9938-4

    Google Scholar 

  • Wu X, Zhu W, Zhang H, Ding H, Zhang HJ (2011a) Exogenous nitric oxide protects against salt-induced oxidative stress in the leaves from two genotypes of tomato (Lycopersicom esculentum Mill.). Acta Physiol Plant 33:1199–1209

    Article  CAS  Google Scholar 

  • Wu D, Qiu L, Xu L, Ye L, Chen M, Sun D, Chen Z, Zhang H, Jin X, Dai F, Zhang G (2011b) Genetic variation of HvCBF genes and their association with salinity tolerance in Tibetan annual wild barley. PLoS One 6:e22938

  • Wu D, Cai S, Chen M, Ye L, Zhang H, Dai F, Zhou M, Chen Z, Zhang G (2013a) Tissue metabolic responses to salt stress in wild and cultivated barley. PLoS ONE 8:e55431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu D, Shen Q, Cai S, Chen ZH, Dai F, Zhang GP (2013b) Ionomic responses and correlations between elements and metabolites under salt stress in Wild and cultivated barley. Plant Cell Physiol 54:1976–1988

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Zhu X, Chen J, Yang S, Ding H, Zha D (2013c) Nitric oxide alleviates adverse salt-induced effects by improving the photosynthetic performance and increasing the anti-oxidant capacity of eggplant (Solanum melongena L.). J Hortic Sci Biotechnol 88:352–360

    CAS  Google Scholar 

  • Wu D, Shen Q, Qiu L, Han Y, Ye L, Jabeen Z, Shu Q, Zhang G (2014) Identification of proteins associated with ion homeostasis and salt tolerance in barley. Proteomics 14:1381–1392

    Article  CAS  PubMed  Google Scholar 

  • Yan F, Deng W, Wang X, Yang C, Li Z (2012) Maize (Zea mays L.) homologue of ABA-insensitive (ABI) 5 gene plays a negative regulatory role in abiotic stresses response. Plant Growth Regul 68:383–393

    Article  CAS  Google Scholar 

  • Yang Q, Chen ZZ, Zhou XF, Yin HB, Li X, Xin XF, Hong XH, Zhu JK, Gong ZZ (2009) Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol Plant 2:22–31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA, Hasegawa PM, Pardo JM (2002) Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J 30:529–539

    Article  CAS  PubMed  Google Scholar 

  • Zeng CL, Liu L, Wang BR, Wu XM, Zhou Y (2011) Physiological effects of exogenous nitric oxide on Brassica juncea seedlings under NaCl stress. Biol Plantarum 55:345–348

    Article  CAS  Google Scholar 

  • Zhang J, Jia W, Yang J, Ismail AM (2006a) Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Res 97:111–119

    Article  Google Scholar 

  • Zhang Y, Wang L, Liu Y, Zhang Q, Wei Q, Zhang W (2006b) Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta 224:545–555

    Article  CAS  PubMed  Google Scholar 

  • Zhao M, Zhao X, Wu Y, Zhang L (2007a) Enhanced sensitivity to oxidative stress in an Arabidopsis nitric oxide synthase mutant. J Plant Physiol 164:737–745

    Article  CAS  PubMed  Google Scholar 

  • Zhao MG, Tian QY, Zhang WH (2007b) Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiol 144:206–217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We apologize to all researchers whose work we were unable to cite here due to space limitations. This work was supported by China Postdoctoral Science Foundation funded Project (2014M561767), China Natural Science Foundation (31330055, 31171544) and China Agriculture Research System (CARS-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Yin, S. & Huang, L. Towards plant salinity tolerance-implications from ion transporters and biochemical regulation. Plant Growth Regul 76, 13–23 (2015). https://doi.org/10.1007/s10725-014-9997-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-014-9997-6

Keywords

Navigation