Skip to main content
Log in

Microtubule dynamics is required for root elongation growth under osmotic stress in Arabidopsis

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Osmotic stress caused by drought and soil salinity is one of the factors that affect plant root system growth and development. Previous studies have shown that microtubule plays a critical role in plant roots response to osmotic stress, however, the underlying mechanism remains unclear. In the present study, the microtubule orientations in Arabidopsis roots growing under osmotic stress were determined using confocal fluorescence microscopy. The results showed that osmotic stress could significantly inhibit primary root elongation in Arabidopsis, and pharmacological tests confirmed that microtubules were involved in Arabidopsis roots response to osmotic stress. In vivo visualization of microtubule structures with the microtubule-binding domain–green fluorescent protein (GFP) reporter revealed altered microtubule orientation in rhizodermal cells under osmotic stress. These results above indicated that osmotic stress could inhibit the elongation growth of Arabidopsis primary root, and the inhibition effects might result from the changes in microtubule orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson CT, Carroll A, Akhmetova L, Somerville C (2010) Real-time imaging of cellulose reorientation during cell wall expansion in Arabidopsis roots. Plant Physiol 152(2):787–796. doi:10.1104/pp.109.150128

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bisgrove SR (2008) The roles of microtubules in tropisms. Plant Sci 175(6):747–755

    Article  CAS  Google Scholar 

  • Blancaflor EB, Hasenstein KH (1995) Growth and microtubule orientation of Zea mays roots subjected to osmotic stress. Int J Plant Sci 156(6):774–783

    Google Scholar 

  • Blancaflor EB, Jones DL, Gilroy S (1998) Alterations in the cytoskeleton accompany aluminum-induced growth inhibition and morphological changes in primary roots of maize. Plant Physiol 118(1):159–172

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Blum A, Mayer J, Gozlan U (1983) Associations between plant production and some physiological components of drought resistance in wheat. Plant Cell Environ 6(3):219–225. doi:10.1111/1365-3040.ep11587630

    Google Scholar 

  • Deak KI, Malamy J (2005) Osmotic regulation of root system architecture. Plant J 43(1):17–28. doi:10.1111/j.1365-313X.2005.02425.x

    Article  PubMed  CAS  Google Scholar 

  • Fitter AH, Stickland TR (1991) Architectural analysis of plant root systems 2. Influence of nutrient supply on architecture in contrasting plant species. New Phytol 118(3):383–389. doi:10.1111/j.1469-8137.1991.tb00019.x

    Article  Google Scholar 

  • Fujita S, Pytela J, Hotta T, Kato T, Hamada T, Akamatsu R, Ishida Y, Kutsuna N, Hasezawa S, Nomura Y (2013) An atypical tubulin kinase mediates stress-induced microtubule depolymerization in Arabidopsis. Curr Biol 23(20):1969–1978

    Article  PubMed  CAS  Google Scholar 

  • Hamant O, Heisler MG, Jonsson H, Krupinski P, Uyttewaal M, Bokov P, Corson F, Sahlin P, Boudaoud A, Meyerowitz EM, Couder Y, Traas J (2008) Developmental patterning by mechanical signals in Arabidopsis. Science 322(5908):1650–1655. doi:10.1126/science.1165594

    Article  PubMed  CAS  Google Scholar 

  • Hepler PK, Hush JM (1996) Behavior of microtubules in living plant cells. Plant Physiol 112(2):455–461

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hong Y, Zhang W, Wang X (2010) Phospholipase D and phosphatidic acid signalling in plant response to drought and salinity. Plant Cell Environ 33(4):627–635

    Article  PubMed  CAS  Google Scholar 

  • Iwata K, Tazawa M, Itoh T (2001) Turgor pressure regulation and the orientation of cortical microtubules in Spirogyra cells. Plant Cell Physiol 42(6):594–598. doi:10.1093/pcp/pce073

    Article  PubMed  CAS  Google Scholar 

  • Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic Press, New York

    Google Scholar 

  • Kroeger JH, Zerzour R, Geitmann A (2011) Regulator or driving force? The role of turgor pressure in oscillatory plant cell growth. PLoS ONE 6(4):e18549

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lloyd C, Chan J (2002) Helical microtubule arrays and spiral growth. Plant Cell 14(10):2319–2324

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lopez-Bucio J, Cruz-Ramirez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6(3):280–287. doi:10.1016/s1369-5266(03)00035-9

    Article  PubMed  CAS  Google Scholar 

  • Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312(5779):1491–1495

    Article  PubMed  CAS  Google Scholar 

  • Seung D, Webster MW, Wang R, Andreeva Z, Marc J (2012) Dissecting the mechanism of abscisic acid-induced dynamic microtubule reorientation using live cell imaging. Funct Plant Biol 40(3):224–236

    Article  Google Scholar 

  • Shi L, Wang B, Gong W, Zhang Y, Zhu L, Yang X (2011) Actin filaments and microtubules of Arabidopsis suspension cells show different responses to changing turgor pressure. Biochem Biophys Res Commun 405(4):632–637. doi:10.1016/j.bbrc.2011.01.081

    Article  PubMed  CAS  Google Scholar 

  • Smith LG (2001) Plant cell division: building walls in the right places. Nat Rev Mol Cell Biol 2(1):33–39. doi:10.1038/35048050

    Article  PubMed  CAS  Google Scholar 

  • Squires S, Bisgrove S (2013) The microtubule-associated protein END BINDING1b, auxin, and root responses to mechanical cues. J Plant Growth Regul 32(4):681–691

    Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16(2):123–132. doi:10.1016/j.copbio.2005.02.001

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Zhang L, Chen W (2011a) Plant cortical microtubules are putative sensors under abiotic stresses. Biochem (Moscow) 76(3):320–326

    Article  CAS  Google Scholar 

  • Wang Y, Wang B, Gilroy S, Chehab EW, Braam J (2011b) CML24 is involved in root mechanoresponses and cortical microtubule orientation in Arabidopsis. J Plant Growth Regul 30(4):467–479. doi:10.1007/s00344-011-9209-9

    Article  CAS  Google Scholar 

  • Wightman R, Turner S (2010) Trafficking of the plant cellulose synthase complex. Plant Physiol 153(2):427–432. doi:10.1104/pp.110.154666

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhao Y, Hasenstein KH (2009) Primary root growth regulation: the role of auxin and ethylene antagonists. J Plant Growth Regul 28(4):309–320

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 11172337), and Science and Technology Project of Chongqing Municipal Education Commission, China (No. KJ121403), and Natural Science Foundation of Chongqing (No.CSTC2011jjA80008). We thank Elliot M. Meyerowitz for kindly providing the MBD–GFP Arabidopsis seeds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bochu Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Wang, B., Zhang, Y. et al. Microtubule dynamics is required for root elongation growth under osmotic stress in Arabidopsis . Plant Growth Regul 74, 187–192 (2014). https://doi.org/10.1007/s10725-014-9910-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-014-9910-3

Keywords

Navigation