Skip to main content
Log in

Transcriptional regulation of PaPYLs, PaPP2Cs and PaSnRK2s during sweet cherry fruit development and in response to abscisic acid and auxin at onset of fruit ripening

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

To further understand the basis of abscisic acid (ABA) signal transduction in regulating sweet cherry fruit development and ripening, and also the interaction between ABA and indole acetic acid (IAA) at the onset of fruit ripening, full-length or partial cDNA of three PaPYLs (ABA receptor), six PaPP2Cs (type 2C protein phosphatase) and six PaSnRK2s (subfamily 2 of SNF1-related kinases) were identified from sweet cherry. Multiple alignments and phylogeny analyses showed that most of the functional residues or domains were well conserved within each gene family; all PaPP2Cs belonged to the group A PP2C; PaSnRK2.4 and PaSnRK2.5 belonged to subclass III of SnRK2. PaPYL2/3, PaPP2C3/4/6 and PaSnRK2.4 were highly expressed at the early stages of fruit development. Moreover, PaPYL2, PaPP2C3/4, PaSnRK2.4 also had a high expression level at the onset of fruit ripening. Exogenous ABA treatment at 28 days after full bloom decreased the IAA level and promoted fruit ripening by increasing anthocyanin and soluble solids content. However, although IAA treatment induced the ABA accumulation, it delayed the onset of fruit ripening. Most of the PaPYLs and PaSnRK2s didn’t strongly respond to ABA and IAA treatments at 28 days after full bloom, while expressions of PaPP2C3, PaPP2C5 and PaPP2C6 were significantly induced by exogenous ABA and PaPYL1 was significantly induced by exogenous IAA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

CHLH:

Magnesium chelatase H subunit

DAFB:

Days after full bloom

IAA:

Indole acetic acid

PP2C:

Type 2C protein phosphatase

PYL:

Pyrabactin resistance like

PYR1:

Pyrabactin resistance 1

RCAR:

Regulatory components of ABA receptor

SnRK2:

Subfamily 2 of SNF1-related kinases

VIGS:

Virus induced gene silencing

References

  • Alkio M, Jonas U, Sprink T, Van Nocker S, Knoche M (2012) Identification of putative candidate genes involved in cuticle formation in Prunus avium (sweet cherry) fruit. Ann Bot 110:101–112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boneh U, Biton I, Zheng C, Schwartz A, Ben-Ari G (2012) Characterization of potential ABA receptors in Vitis vinifera. Plant Cell Rep 31:311–321

    Article  CAS  PubMed  Google Scholar 

  • Chai YM, Jia HF, Li CL, Dong QH, Shen YY (2011) FaPYR1 is involved in strawberry fruit ripening. J Exp Bot 62:5079–5089

    Article  CAS  PubMed  Google Scholar 

  • Crane JC (1969) The role of hormones in fruit set and development. HortScience 4:108–111

    CAS  Google Scholar 

  • Given NK, Venis MA, Grierson D (1988) Hormonal regulation of ripening in the strawberry, a non-climacteric fruit. Planta 174:402–406

    Article  CAS  PubMed  Google Scholar 

  • Huai JL, Wang M, He JG, Zheng J, Dong ZG, Lv HK et al (2008) Cloning and characterization of the SnRK2 gene family from Zea mays. Plant Cell Rep 27:1861–1868

    Article  CAS  PubMed  Google Scholar 

  • Jia HF, Chai YM, Li CL, Lu D, Luo JJ, Qin L, Shen YY (2011) Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiol 157:1188–1199

    Article  Google Scholar 

  • Kondo S, Gemma H (1993) Relationship between abscisic acid (ABA) content and maturation of the sweet cherry. J Jpn Soc Hortic Sci 62:63–68

    Article  CAS  Google Scholar 

  • Kondo S, Inoue K (1997) Abscisic acid (ABA) and 1-aminocyclopropane-1-carboxylic acid (ACC) content during growth of ‘Satohnishiki’ cherry fruit, and the effect of ABA and ethephon application on fruit quality. J Hortic Sci 72:221–227

    Article  CAS  Google Scholar 

  • Liu BH, Jiang YM, Peng FT, Sui J, Zhao FX, Wang HY (2007) The dynamic changes of endogenous hormones in sweet cherry (Prunus avium L.) pulp. Acta Hortic Sin 34:1535–1538

    CAS  Google Scholar 

  • Luo H, Dai SJ, Ren J, Zhang CX, Ding Y, Li Z, Sun Y, Ji K, Wang YP, Li Q, Chen P, Duan C, Wang Y, Leng P (2014) The role of aba in the maturation and postharvest life of a nonclimacteric sweet cherry fruit. J Plant Growth Regul 33:373–383

    Article  CAS  Google Scholar 

  • Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A et al (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068

    CAS  PubMed  Google Scholar 

  • Mapelli S, Frova C, Torti G, Soressi GP (1978) Relationship between set, development and activities of growth regulators in tomato fruits. Plant Cell Physiol 19:1281–1288

    CAS  Google Scholar 

  • Melcher K, Ng LM, Zhou XE, Soon FF, Xu Y, Suino-Powell KM et al (2009) A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors. Nature 462:602–608

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nishimura N, Hitomi K, Arvai AS, Rambo RP, Hitomi C, Cutler SR et al (2009) Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science 326:1373–1379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nitsch JP (1988) Hormonal factors in growth and development. In: Hulme AC (ed) The biochemistry of fruits and their products. UK Academic Publishers, London, pp 427–472

    Google Scholar 

  • Ozga JA, Reinecke DM (2003) Hormonal interactions in fruit development. J Plant Growth Regul 22:73–81

    Article  CAS  Google Scholar 

  • Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y et al (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rabino I, Mancinelli AL (1986) Light, temperature, and anthocyanin production. Plant Physiol 81:922–924

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ren J, Sun L, Wu JF, Zhao SL, Wang CL, Wang YP et al (2010) Cloning and expression analysis of cDNAs for ABA 8′-hydroxylase during sweet cherry fruit maturation and under stress conditions. J Plant Physiol 167:1486–1493

    Article  CAS  PubMed  Google Scholar 

  • Ren J, Sun L, Wang CL, Zhao SL, Leng P (2011) Expression analysis of cDNA for magnesium chelatase H subunit (CHLH) during sweet cherry fruit ripening and under stress conditions. Plant Growth Regul 63:301–307

    Article  CAS  Google Scholar 

  • Romero P, Lafuente MT, Rodrigo MJ (2012) The Citrus ABA signalosome: identification and transcriptional regulation during sweet orange fruit ripening and leaf dehydration. J Exp Bot 63:4931–4945

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Santiago J, Florine D, Adam R, Regina A, Sang-Youl P, Marc J et al (2009) The abscisic acid receptor PYR1 in complex with abscisic acid. Nature 462:665–668

  • Setha S, Kondo S, Hirai N, Ohigashi H (2005) Quantification of ABA and its metabolites in sweet cherries usingdeuterium-labeled internal standards. Plant Growth Regul 45:183–188

    Article  CAS  Google Scholar 

  • Shen YY, Wang XF, Wu FQ, Du SY, Cao Z, Shang Y et al (2006) Nature 443:823–826

    Article  CAS  PubMed  Google Scholar 

  • Shen CJ, Wang SK, Bai YH, Wu YR, Zhang SN, Chen M et al (2010) Functional analysis of the structural domain of ARF proteins in rice (Oryza sativa L.). J Exp Bot 14:3971–3981

    Article  Google Scholar 

  • Shen XJ, Zhao K, Li LL, Zhang KC, Yuan HZ, Liao X, Wang Q, Guo XW, Li F, Li TH (2014) A role for PacMYBA in ABA-regulated anthocyanin biosynthesis in red-colored sweet cherry cv. Hong Deng (Prunus avium L.). Plant Cell Physiol 55:862–880

    Article  CAS  PubMed  Google Scholar 

  • Stern RA, Flaishman M, Applebaum S, Ben-Arie R (2007) Effect of synthetic auxins on fruit development of ‘Bing’ cherry (Prunus avium L.). Sci Hortic 114:275–280

    Article  CAS  Google Scholar 

  • Sun L, Wang YP, Chen P, Ren J, Ji K, Li Q et al (2011) Transcriptional regulation of SlPYL, SlPP2C, and SlSnRK2 gene families encoding ABA signal core components during tomato fruit development and drought stress. J Exp Bot 62:5659–5669

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun L, Sun YF, Zhang M, Wang L, Ren J, Cui MM, Wang YP, Ji K, Li P, Li Q, Chen P, Dai SJ, Duan CR, Wu Y, Leng P (2012) Suppression of 9-cis-epoxycarotenoid dioxygenase, which encodes a key enzyme in abscisic acid biosynthesis, alters fruit texture in transgenic tomato. Plant Physiol 158:283–298

    Article  PubMed Central  PubMed  Google Scholar 

  • Talon M, Zacarias L, Primo-Millo E (1990) Hormonal changes associated with fruit set and development in mandarins differing in their parthenocarpic ability. Physiol Plant 79:400–406

    Article  CAS  Google Scholar 

  • Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K et al (2009) Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci USA 106:17588–17593

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2010) Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol 51:1821–1839

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wan CY, Wilkins TA (1994) A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.). Anal Biochem 223:7–12

    Article  CAS  PubMed  Google Scholar 

  • Wang YP, Wang Y, Kai W, Zhao B, Chen P, Sun L et al (2014) Transcriptional regulation of abscisic acid signal core components during cucumber seed germination and under Cu2+, Zn2+, NaCl and simulated acid rain stresses. Plant Physiol Biochem 76:67–76

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu FQ, Xin Q, Cao Z, Liu ZQ, Du SY, Mei C et al (2009) The magnesium-chelatase h subunit binds abscisic acid and functions in abscisic acid signaling: new evidence in Arabidopsis. Plant Physiol 150:1940–1954

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F, Shinozaki K (2006) The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in arabidopsis. J Biol Chem 281:5310–5318

  • Yu YM, Liu CX, Zhang WH, Wang ZF, Cao QW, Sun XL (2008) An improved HPLC method for detecting inner hormones in cucumber fruit. Shandong Agric Sci 7:97–99

    Google Scholar 

  • Yuasa T, Tomikubo Y, Yamauchi T,  Inoue A, Iwaya-Inoue M (2007) Environmental stresses activate a tomato SNF1-related protein kinase 2 homolog, SlSnRK2C. Plant Biotechnol 24:401–408

  • Zhang M, Yuan B, Leng P (2009) The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. J Exp Bot 60:1579–1588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Merianne Alkio from University of Hannover for providing the sweet cherry contig database and for the helpful advice in the revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Leng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Chen, P., Sun, L. et al. Transcriptional regulation of PaPYLs, PaPP2Cs and PaSnRK2s during sweet cherry fruit development and in response to abscisic acid and auxin at onset of fruit ripening. Plant Growth Regul 75, 455–464 (2015). https://doi.org/10.1007/s10725-014-0006-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-014-0006-x

Keywords

Navigation