Skip to main content
Log in

GA2 and GA20-oxidase expressions are associated with the meristem position in Streptocarpus rexii (Gesneriaceae)

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

We examined genes involved in the regulatory pathway of gibberellin (GA) in meristems of Streptocarpus rexii. The plants do not possess a typical shoot apical meristem (SAM) and form unique meristems: the basal meristem extends the lamina area of one cotyledon to produce anisocotylous seedlings; the groove meristem forms new leaves at the base of the macrocotyledon. Exogenous application of GA significantly suppresses the basal meristem activity in developing cotyledons and the seedlings remain isocotyl. To examine the role of endogenous GA on these meristems in vivo, we isolated homologs of GA2-oxidase responsible for degrading active GAs (SrGA2ox), and GA20-oxidase regulating the rate limiting step of active GA synthesis (SrGA20ox). During embryogenesis, while first partly overlapping, the expression of SrGA2ox and SrGA20ox became more differentiated and mutually exclusive, ending with SrGA2ox being expressed solely in the adaxial–proximal domain of the embryo in regions with meristem activity, whereas SrGA20ox was restricted to the fork between the two cotyledons. The latter may be responsible for suppressing the formation of an embryonic SAM in S. rexii. In developing seedlings, SrGA2ox expression also followed the centers of meristem activity, where SrGA20ox expression was excluded. Our results suggest that low levels of GA are required in S. rexii meristems for their establishment and maintenance. Thus, the meristems in S. rexii share similar regulatory pathways suggested for the SAM in model plants, but that in S. rexii evolutionary modifications involving a lateral transfer of function, from shoot to leaves, is implicated in attaining the unusual morphology of the plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bolduc N, Hake S (2009) The maize transcription factor KNOTTED1 directly regulates the gibberellin catabolism gene ga2ox1. Plant Cell 21:1647–1658

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burtt BL (1970) Studies in Genseriaceae of the old world XXXI: some aspect of functional evolution. Notes R Bot Gard Edinb 30:1–10

    Google Scholar 

  • Carzoli FG, Michelotti V, Fambrini M, Salvini M, Pugliesi C (2009) Molecular cloning and organ-specific expression of two Gibberellin 20-oxidase genes of Helianthus annuus. Plant Mol Biol Rep 27:144–152

    Article  CAS  Google Scholar 

  • Cutler DF, Botha T, Stevenson DW (2007) Plant anatomy: an applied approach. Blackwell Publishing, Oxford

    Google Scholar 

  • Frisse A, Pimenta MJ, Lange T (2003) Expression studies of gibberellin oxidases in developing pumpkin seeds. Plant Physiol 131:1220–1227

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hake S, Smith HMS, Holtan H, Magnani E, Mele G, Ramirez J (2004) The role of KNOX genes in plant development. Annu Rev Cell Dev Biol 20:125–151

    Article  CAS  PubMed  Google Scholar 

  • Harrison J, Möller M, Langdale J, Cronk Q, Hudson A (2005) The role of KNOX genes in the evolution of morphological novelty in Streptocarpus. Plant Cell 17:430–443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hay A, Kaur H, Phillips A, Hedden P, Hake S, Tsiantis M (2002) The gibberellin pathway mediates KNOTTED1-type homeobox function in plants with different body plans. Curr Biol 12:1557–1565

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, Polonenko DR, Camirand A, Maclachlan G (1986) Pea xyloglucan and cellulose IV. Assembly of ß-glucans by pea protoplasts. Plant Physiol 82:301–306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Imaichi R, Nagumo S, Kato M (2000) Ontogenetic anatomy of Streptocarpus grandis (Gesneriaceae) with implications for evolution of monophylly. Ann Bot 86:37–46

    Article  Google Scholar 

  • Jasinski S, Piazza P, Craft J, Hay A, Woolley L, Rieu I, Phillips A, Hedden P, Tsiantis M (2005) KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol 15:1560–1565

    Article  CAS  PubMed  Google Scholar 

  • Jong K (1970) Developmental aspects of vegetative morphology of Streptocarpus. PhD dissertation, University of Edinburgh

  • Jong K, Burtt BL (1975) The evolution of morphological novelty exemplified in the growth patterns of some Gesneriaceae. New Phytol 75:297–311

    Article  Google Scholar 

  • Jürgens G (2001) Apical-basal pattern formation in Arabidopsis embryogenesis. EMBO J 20:3609–3616

    Article  PubMed  Google Scholar 

  • Kuwabara A, Nagata T (2006) Cellular basis of developmental plasticity observed in heterophyllous leaf formation of Ludwigia arcuata (Onagraceae). Planta 224:761–770

    Article  CAS  PubMed  Google Scholar 

  • Lavoie H, Hogues H, Mallick J, Sellam A, Nantel A, Whiteway M (2010) Evolutionary tinkering with conserved components of a transcriptional regulatory network. PLoS Biol 8:e1000329

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee DJ, Zeevaart JAD (2005) Molecular cloning of GA 2-Oxidase3 from spinach and its ectopic expression in Nicotiana sylvestris. Plant Physiol 138:243–254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Long JA, Moan EI, Medford JI, Barton MK (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379:66–69

    Article  CAS  PubMed  Google Scholar 

  • Mantegazza R, Möller M, Harrison CJ, Fior S, De Luca C, Spada A (2007) Anisocotyly and meristem initiation in an unorthodox plant, Streptocarpus rexii (Gesneriaceae). Planta 225:653–663

    Article  CAS  PubMed  Google Scholar 

  • Mantegazza R, Tononi P, Möller M, Spada A (2009) WUS and STM homologs are linked to the expression of lateral dominance in the acaulescent Streptocarpus rexii (Gesneriaceae). Planta 230:529–542

    Article  CAS  PubMed  Google Scholar 

  • Nishii K, Nagata T (2007) Developmental analyses of the phyllomorph formation in the rosulate species Streptocarpus rexii (Gesneriaceae). Plant Syst Evol 265:135–145

    Article  Google Scholar 

  • Nishii K, Kuwabara A, Nagata T (2004) Characterization of anisocotylous leaf formation in Streptocarpus wendlandii (Gesneriaceae): significance of plant growth regulators. Ann Bot 94:457–467

    Article  CAS  PubMed  Google Scholar 

  • Nishii K, Möller M, Kidner CA, Spada A, Mantegazza R, Wang C-N, Nagata T (2010) A complex case of simple leaves: indeterminate leaves co-express ARP and KNOX1 genes. Dev Gen Evol 220:25–40

    Article  CAS  Google Scholar 

  • Nishii K, Wang C-N, Spada A, Nagata T, Möller M (2012) Gibberellin as a suppressor of lateral dominance and inducer of apical growth in the unifoliate Streptocarpus wendlandii (Gesneriaceae). N Z J Bot 50:267–287

    Article  Google Scholar 

  • Ochman H, Gerber AS, Hart DL (1988) Genetic applications of an inverse polymerase chain reaction. Genetics 120:621–623

    CAS  PubMed  Google Scholar 

  • Olszewski N, Sun T-P, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14:S61–S80

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park S, Harada JJ (2008) Arabidopsis embryogenesis. Methods Mol Biol 427:3–16

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:E36

    Article  PubMed Central  PubMed  Google Scholar 

  • Rieu I, Eriksson S, Powers SJ, Gong F, Griffiths J, Woolley L, Benlloch R, Nilsson O, Thomas SG, Hedden P, Phillipsa AL (2008) Genetic analysis reveals that C19-GA 2-oxidation is a major gibberellin inactivation pathway in Arabidopsis. Plant Cell 20:2420–2436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosenblum IM, Basile DV (1984) Hormonal-regulation of morphogenesis in Streptocarpus and its relevance to evolutionary history of the Gesneriaceae. Am J Bot 71:52–64

    Article  CAS  Google Scholar 

  • Sakamoto T, Kamiya N, Ueguchi-Tanaka M, Iwahori S, Matsuoka M (2001a) KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev 15:581–590

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Kobayashi M, Itoh H, Tagiri A, Kayano T, Tanaka H, Iwahori S, Matsuoka M (2001b) Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiol 125:1508–1516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  • Solfanelli C, Ceron F, Paolicchi F, Giorgetti L, Geri C, Ceccarelli N, Kamiya Y, Picciarelli P (2005) Expression of two genes encoding gibberellin 2- and 3-oxidases in developing seeds of Phaseolus coccineus. Plant Cell Physiol 46:1116–1124

    Article  CAS  PubMed  Google Scholar 

  • Staheli JP, Boyce R, Kovarik D, Rose TM (2011) CODEHOP PCR and CODEHOP PCR primer design. In: Park DJ (ed) PCR protocols (Methods in molecular biology), vol 687. Humana Press, New York, pp 57–73

  • Steeves TA, Sussex IM (1989) Patterns in plant development. Cambridge University Press, New York

    Book  Google Scholar 

  • Swofford DL (2002) PAUP*: Phylogenetic analysis using parsimony (*and other methods), version 4.0b10. Sinauer Associates, Sunderland

    Google Scholar 

  • Tanaka-Ueguchi M, Itoh H, Oyama N, Koshioka M, Matsuoka M (1998) Over-expression of tobacco homeobox gene, NTH15, decreases the expression of a gibberellin biosynthetic gene encoding GA 20-oxidase. Plant J 15:391–400

    Article  CAS  PubMed  Google Scholar 

  • Thomas SG, Phillips AL, Heddem P (1999) Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci USA 96:4698–4703

    Article  CAS  PubMed  Google Scholar 

  • Tononi P, Möller M, Bencivenga S, Spada A (2010) GRAMINIFOLIA homolog expression in Streptocarpus rexii is associated with the basal meristems in phyllomorphs, a morphological novelty in Gesneriaceae. Evol Dev 12:61–73

    Article  CAS  PubMed  Google Scholar 

  • Veit B (2004) Determination of cell fate in apical meristems. Curr Opin Plant Biol 7:57–64

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Caruso LV, Downie AB, Perry SE (2004) The embryo MADS domain protein AGAMOUS-like 15 directly regulates expression of a gene encoding an enzyme involved in gibberellin metabolism. Plant Cell 16:1206–1219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu Y-L, Li L, Wu K, Peeters AJM, Gage DA, Zeevaart JAD (1995) The GA5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase: molecular cloning and functional expression. Proc Natl Acad Sci USA 92:6640–6644

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by a Taiwan-Italy Scientific Research Cooperation grant from the National Science Council (NSC) in Taiwan and National Research Council (CNR) in Italy (Grant Number 99-2923-B-002-007-MY2) and the Excellent Research Program from the National Taiwan University (10R30701, NTU) to CW. KN is supported by the NSC funding NSC 101-2811-B-002-150 and Sibbald Trust at Royal Botanic Garden Edinburgh (UK). We thank Dr. Min-Liang Kuo (NTU), Dr. Shin-Tong Jeng (NTU), Dr Tsan-Piao Lin (NTU) and Dr. Shih-Ying Hwang (National Taiwan Normal University, Taiwan) for their research funding support and helpful comments on this study. We thank Dr. K.-J. Tang and Ms. Y.-Y. Gao (TechComm, NTU) for technical support and enabling access to real-time PCR facilities. We thank the Science Division of RBGE for supporting this work. RBGE is supported by the Rural and Environment Science and Analytical Services division (RESAS) in the Scottish Government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kanae Nishii, Chun-Neng Wang or Alberto Spada.

Additional information

Kanae Nishii and Meng-Jung Ho have equally contributed to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 27 kb)

Supplementary material 2 (PPT 3176 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishii, K., Ho, MJ., Chou, YW. et al. GA2 and GA20-oxidase expressions are associated with the meristem position in Streptocarpus rexii (Gesneriaceae). Plant Growth Regul 72, 123–140 (2014). https://doi.org/10.1007/s10725-013-9844-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-013-9844-1

Keywords

Navigation