Skip to main content
Log in

Oxidative stress and antioxidant activity as the basis of senescence in chrysanthemum florets

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Stems of chrysanthemum (Chrysanthemum morifolium Ramat.) cv. Maghi were harvested when half of the buds showed colour and were put in distilled water at 21°C. Flowers showed visible senescence symptoms after 12–15 d. Reactive oxygen species (ROS) concentration and lipid peroxidation increased from young floret stage to the senescent stage. Activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD) and catalase (CAT) showed uniform increases from young floret through to the mature stage and thereafter, declined. Among the SOD isoforms, Fe-SOD and Cu/Zn-SOD were induced during the onset of senescence. Similarly different isoforms of APX and glutathione reductase (GR) also appeared during the senescence process. The capacity of the antioxidative defence system increased during the onset of senescence but the imbalance between ROS production and antioxidant defences ultimately led to oxidative damage. It is proposed that a decrease in the activity of a number of antioxidant enzymes that normally prevent the build up of free radicals can at least partially account for the observed senescence of chrysanthemum florets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

CAT:

Catalase

GR:

Glutathione reductase

LOX:

Lipoxygenase

MDA:

Malondialdehyde

G-POD:

Guaiacol peroxidase

ROS:

Reactive oxygen species

RWC:

Relative water content

SOD:

Superoxide dismutase

References

  • Able AJ, Guest DI, Sutherland MW (1988) Use of a new tetrazolium-based assay to study the production of superoxide radicals by tobacco cell cultures challenged with avirulent zoospores of Phytophthora parasitica var nicotianae. Plant Physiol 117:491–499

    Article  Google Scholar 

  • Aebi H (1974) Catalases. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 2. Academic Press, New York, pp 673–684

    Google Scholar 

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and UV on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344

    Article  CAS  Google Scholar 

  • Alscher RG (1989) Biosynthesis and antioxidant function of glutathione in plants. Plant Physiol 77:457–464

    Article  CAS  Google Scholar 

  • Anderson MD, Prasad TK, Stewart CR (1995) Changes in the isozyme profiles of catalase, peroxidase and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiol 109:1247–1257

    PubMed  CAS  Google Scholar 

  • Asada K (1992) Ascorbate peroxidase—a hydrogen peroxide scavenging enzyme in plants. Physiol Plant 85:235–241

    Article  CAS  Google Scholar 

  • Axerold B, Chesbrough TM, Laakso S (1981) Lipoxygenase from soybean. In: Lowenstein JM (ed) Methods enzymology. Academic press, New York, pp 441–451

    Google Scholar 

  • Bailly C, Benamar A, Corbineau F, Dôme D (1996) Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seed as related to deterioration during accelerated aging. Physiol Plant 97:104–110

    Article  CAS  Google Scholar 

  • Bailly C, Corbineau F, Doorn WG (2001) Free radical scavenging and senescence in Iris tepals. Plant Physiol Biochem 39:649–656

    Article  CAS  Google Scholar 

  • Bartoli CG, Simontacchi M, Guiamet JJ, Montaldi E, Puntarulo S (1995) Antioxidant enzymes and lipid peroxidation during aging of Chrysanthemum morifolium RAM petals. Plant Sci 104:161–168

    Article  CAS  Google Scholar 

  • Bayer WF, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in condition. Annals Biochem 161:559–566

    Article  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Annals Biochem 44:276–287

    Article  CAS  Google Scholar 

  • Bowler CM, van Montagu, Inze D (1992) Superoxide dismutase and stress tolerance. Ann Rev Plant Physiol Plant Mol Biol 43:83–116

    Article  CAS  Google Scholar 

  • Bowler C, Van Camp W, Van Montagu M, Inze D (1994) Superoxide dismutase in plants. CRC Crit Rev Plant Sci 13:199–218

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Annals Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Broadbent P, Creissen GP, Kular B, Wellburn AR, Mullineaux P (1995) Oxidative stress responses in transgenic tobacco containing altered levels of glutathione reductase activity. Plant J 8:247–255

    Article  CAS  Google Scholar 

  • Calbert I, Mannervik B (1985) Glutathione reductase. Meth Enzymol 113:484–490

    Google Scholar 

  • Chen GX, Asada K (1989) Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol 30:987–998

    CAS  Google Scholar 

  • Corpas FJ, Barroso JB, del Rio LA (2001) Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends in Plant Sci 6:145–150

    Article  CAS  Google Scholar 

  • del Rio LA, Pastori GM, Palma JM, Sandalio LM, Sevilla F, Corpas FJ, Jimenez A, Lopez-Huertas E, Hernandez JA (1998) The activated oxygen role of peroxisomes in senescence. Plant Physiol 116:1195–1200

    Article  PubMed  Google Scholar 

  • del Rio LA, Sandalio LM, Altomare DA, Zilinskas BA (2003) Mitochondrial and peroxisomal manganese superoxide dismutase: differential expression during leaf senescence. J Exp Bot 54:923–933

    Article  PubMed  CAS  Google Scholar 

  • Dhindsa RA, Plumb-Dhindsa P, Thorpe PA (1981) Leaf senescence: correlated with increased permeability and lipid peroxidation, and decreases levels of superoxide dismutase and catalase. J Exp Bot 126:93–101

    Article  Google Scholar 

  • Edwards EA, Enard C, Creissen GP, Mullineaux PM (1994) Synthesis and properties of glutathione reductase in stressed peas. Planta 192:137–143

    CAS  Google Scholar 

  • Fielding JL, Hall JL (1978) A biochemical and cytological study of peroxidase activity in roots of Pisum sativum. J Exp Bot 29:969–981

    Article  CAS  Google Scholar 

  • Halliwell B (1987) Oxidative damage, lipid peroxidation and antioxidant protection in chloroplasts. Chem Phys Lipids 44:327–340

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine. Clarendon Press, Oxford

    Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  PubMed  CAS  Google Scholar 

  • Hossain Z, Mandal AKA, Datta SK, Biswas AK (2006) Decline in ascorbate peroxidase activity- a prerequisite factor for tepal senescence in gladiolus. J Plant Physiol 167:186–194

    Article  CAS  Google Scholar 

  • Hung SH, Yu CW, Lin CH (2005) Hydrogen peroxide functions as a stress signal in plants. Bot Bull Acad Sin 46:1–10

    CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Larson RA (1988) The antioxidants of higher plants. Phytochemistry 27:969–978

    Article  CAS  Google Scholar 

  • Lesham YY (1992) Membrane-associated phospholytic and lipolytic enzymes. In: Lesham YY (ed) Plant membranes: a biophysical approach to structure, development and senescence. Kluwer Academic Publishers, Dordrecht, pp 174–191

    Google Scholar 

  • Leverentz MK, Rogers CW, Stead JH, Usawadee ADC, Silkowski H, Thomas B, Weichert H, Feussner I, Griffiths G (2002) Characterization of a novel lipoxygenase-independent senescence mechanism in Alstroemeria peruviana floral tissue. Plant Physiol 130:273–283

    Article  PubMed  CAS  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    Article  PubMed  CAS  Google Scholar 

  • McCarthy I, Romero-Puertas MC, Palma JM, Sandalio LM, Corpas FJ, Gomez M, del Rio LA (2001) Cadmium induces senescence symptoms in leaf peroxisomes of pea plants. Plant Cell Environ 24:1065–1073

    Article  CAS  Google Scholar 

  • Meister A (1981) Metabolism and functions of glutathione. Trends Biochem Sci 6:231–234

    Article  CAS  Google Scholar 

  • Mittler R, Zilinskas BA (1993) Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate dependent reduction of nitroblue tetrazolium. Annals Biochem 212:540–546

    Article  CAS  Google Scholar 

  • Ogawa K, Tasaka Y, Mino M, Tanaka Y, Iwabuchi M (2001) Association of glutathione with flowering in Arabidopsis thaliana. Plant Cell Physiol 42:524–530

    Article  PubMed  CAS  Google Scholar 

  • Panavas T, Rubinstein B (1998) Oxidative events during programmed cell death of daylily (Hemerocallis hybrid) petals. Plant Sci 133:25–138

    Article  Google Scholar 

  • Paulin A, Droillard M, Bureau JM (1986) Effect of a free radical scavenger, 3,4,5-trichlorophenol, on ethylene production and on changes in lipids and membrane integrity during senescence of petals of cut carnations (Dianthus carvophyllus). Physiol Plant 67:465–471

    Article  CAS  Google Scholar 

  • Peary JS, Prince TA (1990) Floral lipoxygenase: activity during senescence and inhibition by phenidone. J Am Soc Hortic Sci 115:455–457

    CAS  Google Scholar 

  • Prochazkova D, Sairam RK, Srivastava GC, Singh DV (2001) Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci 161:765–771

    Article  CAS  Google Scholar 

  • Pütter J (1974) Peroxidases. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 2. Academic Press, New York, pp 685–690

    Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP (1996) Ultraviolet-B- and ozone induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol 110:125–136

    Article  PubMed  CAS  Google Scholar 

  • Reed DJ (1990) Glutathione: toxicological implications. Annu Rev Pharmacol Toxicol 30:603–631

    Article  PubMed  CAS  Google Scholar 

  • Sairam RK, Deshmukh PS, Shukla DS (1997) Tolerance to drought and temperature stress in relation to increased antioxidant enzyme activity in wheat. J Agron Crop Sci 178:171–177

    Article  CAS  Google Scholar 

  • Schöner S, Krause GH (1990) Protective systems against active oxygen species in spinach: response to cold acclimation in excess light. Planta 180:383–389

    Article  Google Scholar 

  • Smith IK, Vierheller TL, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenates using 5, 5′-dithiobis (2-nitrobenzoic acid). Annals Biochem 175:408–413

    Article  CAS  Google Scholar 

  • Thompson JE, Froese CD, Madey E, Smith MD, Hong YW (1998) Lipid metabolism during plant senescence. Progr Lipid Res 37:119–141

    Article  CAS  Google Scholar 

  • Weatherley PE (1950) Studies in the water relations of the cotton plant. 1. The field measurement of water deficit in leaves. New Phytology 49:8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Chakrabarty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakrabarty, D., Chatterjee, J. & Datta, S.K. Oxidative stress and antioxidant activity as the basis of senescence in chrysanthemum florets. Plant Growth Regul 53, 107–115 (2007). https://doi.org/10.1007/s10725-007-9208-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-007-9208-9

Keywords

Navigation