Skip to main content

Advertisement

Log in

Time and Energy Optimization Algorithms for the Static Scheduling of Multiple Workflows in Heterogeneous Computing System

  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

The heterogeneous computing system (HCS), which is used to deal with complex and enormous business or scientific workflows, is playing a very important role as cloud computing rapidly develops. For multiple workflows computing in HCS, one of challenging issues is how to make a reasonable tradeoff between the schedule length and energy consumption. In this paper, we focus on a workflow that can be represented by a directed acyclic graph (DAG). We propose the corresponding algorithms which cooperate with dynamic voltage and frequency scaling (DVFS) technique to address the aforementioned concern and evaluate the algorithms in terms of randomly generated DAGs, real application DAGs and their hybrids under DVFS-enabled HCS. From the experimental results, we draw the conclusion that interleaving workflows lead to a better average tradeoff when scheduling multiple workflows in HCS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hwang, K., Dongarra, J., Fox, G.C.: Distributed and cloud computing: from parallel processing to the internet of things. Morgan Kaufmann (2013)

  2. Xindong, W., Zhu, X., Gong-Qing, W., Ding, W.: Data mining with big data. IEEE Trans. Knowl. Data Eng. 26(1), 97–107 (2014)

    Article  Google Scholar 

  3. Xia, Z., Wang, X., Sun, X., Wang, Q.: A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 27(2), 340–352 (2016)

    Article  Google Scholar 

  4. Zhangjie, F., Sun, X., Qi, L., Zhou, L., Shu, J.: Achieving efficient cloud search services: Multi-keyword ranked search over encrypted cloud data supporting parallel computing. IEICE Trans. Commun. 98(1), 190–200 (2015)

    Google Scholar 

  5. Srivastava, M.B., Chandrakasan, A.P., Brodersen, R.W.: Predictive system shutdown and other architectural techniques for energy efficient programmable computation. IEEE Trans. Very Large Scale Integr. VLSI Syst. 4(1), 42–55 (1996)

    Article  Google Scholar 

  6. Li, K.: Power allocation and task scheduling on multiprocessor computers with energy and time constraints. Energy aware distributed computing system. Wiley series on parallel and distributed computing, 1 (2011)

  7. Wikipedia: Dynamic voltage scaling. https://en.wikipedia.org/wiki/Dynamic_voltage_scaling. [Online; accessed 19-April-2016]

  8. Tang, Z., Qi, L., Cheng, Z., Li, K., Khan, S.U., Li, K.: An energy-efficient task scheduling algorithm in dvfs-enabled cloud environment. Journal of Grid Computing, 1–20 (2015)

  9. Huang, Q., Su, S., Li, J., Xu, P., Shuang, K., Huang, X.: Enhanced energy-efficient scheduling for parallel applications in cloud. In: Proceedings of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012), pp 781–786 (2012)

  10. Sen, S., Huang, Q., Li, J., Cheng, X., Peng, X., Shuang, K.: Enhanced energy-efficient scheduling for parallel tasks using partial optimal slacking. The Computer Journal, page bxu002 (2014)

  11. Lee, Y.C., Zomaya, A.Y.: Energy conscious scheduling for distributed computing systems under different operating conditions. IEEE Trans. Parallel Distrib. Syst. 22(8), 1374–1381 (2011)

    Article  Google Scholar 

  12. Gerards, M.E.T., Hurink, J.L., Kuper, J.: On the interplay between global dvfs and scheduling tasks with precedence constraints. IEEE Trans. Comput. 64(6), 1742–1754 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Bittencourt, L.F., Madeira, E.R.M.: Towards the scheduling of multiple workflows on computational grids. J. Grid Comput. 8(3), 419–441 (2010)

    Article  Google Scholar 

  14. Bittencourt, L.F., Madeira, E.R.M.: Fulfilling task dependence gaps for workflow scheduling on grids. In: Signal-Image Technologies and Internet-Based System SITIS’07. Third International IEEE Conference on, p 2007 (2007)

  15. Xie, G., Liu, L., Yang, L., Li, R.: Scheduling Trade-Off of Dynamic Multiple Parallel Workflows on Heterogeneous Distributed Computing Systems. Concurrency and Computation: Practice and Experience (2016)

  16. Topcuoglu, H., Hariri, S., Wu, M.-Y.: Performance-effective and low-complexity task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 13(3), 260–274 (2002)

    Article  Google Scholar 

  17. Garey Michael, R., Johnson David, S.: Computers and intractability: a guide to the theory of np-completeness. WH Free. Co. San Fr (1979)

  18. Ullman, J.D.: Np-complete scheduling problems. J. Comput. Syst. Sci. 10(3), 384–393 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sih, G.C., Lee, E.A.: A compile-time scheduling heuristic for interconnection-constrained heterogeneous processor architectures. IEEE Trans. Parallel Distrib. Syst. 4(2), 175–187 (1993)

    Article  Google Scholar 

  20. Daoud, M.I., Kharma, N.: A high performance algorithm for static task scheduling in heterogeneous distributed computing systems. J. Parallel Distrib. Comput. 68(4), 399–409 (2008)

    Article  MATH  Google Scholar 

  21. Boeres, C., Rebello, V.E.F., et al.: A cluster-based strategy for scheduling task on heterogeneous processors. In: Computer Architecture and High Performance Computing, 2004. SBAC-PAD 2004. 16th Symposium on, pp 214–221 (2004)

  22. Yang, T., Gerasoulis, A.: Dsc: Scheduling parallel tasks on an unbounded number of processors. IEEE Trans. Parallel Distrib. Syst. 5(9), 951–967 (1994)

    Article  Google Scholar 

  23. Bansal, S., Kumar, P., Singh, K.: Dealing with heterogeneity through limited duplication for scheduling precedence constrained task graphs. J. Parallel Distrib. Comput. 65(4), 479–491 (2005)

    Article  MATH  Google Scholar 

  24. Zhao, H., Sakellariou, R.: Scheduling multiple dags onto heterogeneous systems. In: Parallel Distributed Processing Symposium, 2006. IPDPS 2006. 20th International, pages 14–pp. IEEE (2006)

  25. N’Takpé, T., Frédéric, S.: Concurrent scheduling of parallel task graphs on multi-clusters using constrained resource allocations. In: Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium on, pp 1–8 (2009)

  26. Casanova, H., Desprez, F., Suter, F.: On cluster resource allocation for multiple parallel task graphs. J. Parallel Distrib. Comput. 70(12), 1193–1203 (2010)

    Article  MATH  Google Scholar 

  27. Bochenina, K., Butakov, N., Boukhanovsky, A.: Static scheduling of multiple workflows with soft deadlines in non-dedicated heterogeneous environments. Futur. Gener. Comput. Syst. 55, 51–61 (2016)

    Article  Google Scholar 

  28. Chen, W., Lee, Y.C., Fekete, A., Zomaya, AY: Adaptive multiple-workflow scheduling with task rearrangement. J. Supercomput. 71(4), 1297–1317 (2015)

    Article  Google Scholar 

  29. Keqin, L.: Scheduling precedence constrained tasks with reduced processor energy on multiprocessor computers. IEEE Trans. Comput. 61(12), 1668–1681 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, L., Von Laszewski, G., Dayal, J., Wang, F.: Towards energy aware scheduling for precedence constrained parallel tasks in a cluster with dvfs. In: Cluster, Cloud and Grid Computing (CCGrid), 2010 10th IEEE/ACM International Conference on, pp 368–377 (2010)

  31. Intel: Intel pentium m processor datasheet (2004)

  32. Min, R., Furrer, T., Chandrakasan, A.: Dynamic voltage scaling techniques for distributed microsensor networks. In: VLSI, 2000. Proceedings. IEEE Computer Society Workshop on, pp 43–46 (2000)

  33. Pravanjan, C., Chakrabarti, P.P., Kumar, R.: Online scheduling of dynamic task graphs with communication and contention for multiprocessors. IEEE Trans. Parallel Distrib. Syst. 23(1), 126–133 (2012)

    Article  Google Scholar 

  34. Mei, J., Li, K., Zhou, X., Li, K.: Fault-tolerant dynamic rescheduling for heterogeneous computing systems. J. Grid Comput. 13(4), 507–525 (2015)

    Article  Google Scholar 

  35. Nesmachnow, S., Dorronsoro, B., Pecero, J.E., Bouvry, P.: Energy-aware scheduling on multicore heterogeneous grid computing systems. J. Grid Comput. 11(4), 653–680 (2013)

    Article  Google Scholar 

  36. Chandrakasan, A.P., Sheng, S., Brodersen, R.W.: Low-power cmos digital design. IEICE Trans. Electron. 75(4), 371–382 (1992)

    Google Scholar 

  37. Fahringer, T., Prodan, R., Duan, R., Nerieri, F., Podlipnig, S., Qin, J., Siddiqui, M., Truong, H.-L., Villazon, A., Askalon, M.W.: A grid application development and computing environment. In: Proceedings of the 6th IEEE/ACM International Workshop on Grid Computing, pp 122–131 (2005)

  38. Jiang, J., Lin, Y., Xie, G., Zhang, S.: Energy optimization heuristic for deadline-constrained workflows in heterogeneous distributed systems. J. Comput. Res. Dev. 53(7), 1503–1516 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaping Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Lin, Y., Xie, G. et al. Time and Energy Optimization Algorithms for the Static Scheduling of Multiple Workflows in Heterogeneous Computing System. J Grid Computing 15, 435–456 (2017). https://doi.org/10.1007/s10723-017-9391-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10723-017-9391-5

Keywords

Navigation