Skip to main content
Log in

Use of the synthetic Oligo-pTa535 and Oligo-pAs1 probes for identification of Hordeum chilense-origin chromosomes in hexaploid tritordeum

  • Short Communication
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The synthetic oligonucleotide probes Oligo-pTa535 and Oligo-pAs1 were previously developed by other authors based on the repetitive sequences of clones pTa535 and pAs1 available in GenBank, and have been used as probes in fluorescence in situ hybridization (FISH) experiments allowing the identification of wheat and rye chromosomes. Their suitability as nondenaturing fluorescence in situ hybridization (ND-FISH) probes turned the hybridization procedure less time consuming, easier and more affordable. Contrastingly to conventional FISH, ND-FISH does not require DNA denaturing, preserving the chromosomal morphology and being adequate for successive hybridizations on the same chromosome spread. In this study, we hybridized, for the first time, the Oligo-pTa535 and Oligo-pAs1 probes on mitotic chromosomes of hexaploid tritordeum using ND-FISH. Tritordeum (HchHchAABB) is the synthetic amphiploid resultant from crosses between wild barley (HchHch) and cultivated durum wheat (AABB). Both Oligo-pTa535 and Oligo-pAs1 hybridized on all H. chilense-origin chromosomes of tritordeum, allowing their identification and the construction of an ideogram based on their hybridization patterns and on the physical location of the 45S ribosomal DNA (rDNA) loci detected by pTa71. We are confident that this ideogram will be further useful for the identification of H. chilense-origin chromosomes in other tritordeum lines or allopolyploids involving the Hch-genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Alvarez JB, Ballesteros J, Siller JA, Martin LM (1992) Tritordeum: a new crop of potential importance in the food industry. Hereditas 116:193–197

    Article  Google Scholar 

  • Alvarez JB, Martín A, Martín LM (2001) Variation in the high-molecular-weight glutenin subunits coded at the Glu-Hch1locus in Hordeum chilense. Theor Appl Genet 102:134–137

    Article  CAS  Google Scholar 

  • Anamthawat-Jónsson K, Heslop-Harrison JS (1993) Isolation and characterization of genome-specific DNA sequences in Triticeae species. Mol Gen Genet 240:151–158

    Article  PubMed  Google Scholar 

  • Aragón-Alcaide L, Miller T, Schwarzacher T, Reader S, Moore G (1996) A cereal centromeric sequence. Chromosoma 105:261–268

    Article  PubMed  Google Scholar 

  • Atienza SG, Ramírez CM, Hernández P, Martín A (2004) Chromosomal location of genes for carotenoid pigments in Hordeum chilense. Plant Breed 123:303–304

    Article  CAS  Google Scholar 

  • Atienza SG, Satovic Z, Martín A, Martín LM (2005) Genetic diversity in Hordeum chilense Roem. et Schult. germplasm collection as determined by endosperm storage proteins. Genet Resour Crop Evol 52:127–135

    Article  CAS  Google Scholar 

  • Atienza SG, Ballesteros J, Martín A, Hornero-Méndez D (2007) Genetic variability of carotenoid concentration and degree of esterification among tritordeum (x Tritordeum Ascherson et Graebner) and durum wheat accessions. J Agric Food Chem 55:4244–4251

    Article  CAS  PubMed  Google Scholar 

  • Ballesteros J, Ramirez MC, Martínez C, Atienza SG, Martín A (2005) Registration of HT621, a high carotenoid content Tritordeum germplasm line. Crop Sci 45:2662–2663

    Article  Google Scholar 

  • Cabo S, Carvalho A, Martín A, Lima-Brito J (2014) Structural rearrangements detected in newly-formed hexaploid tritordeum after three sequential FISH experiments with repetitive DNA sequences. J Genet 93:183–188

    Article  PubMed  Google Scholar 

  • Carvalho A, Guedes-Pinto H, Heslop-Harrison JS, Lima-Brito J (2008) Wheat neocentromeres found in F1 triticale × tritordeum hybrids (AABBRHch) after 5-azacytidine treatment. Plant Mol Biol Rep 26:46–52

    Article  CAS  Google Scholar 

  • Carvalho A, Martín A, Heslop-Harrison JS, Guedes-Pinto H, Lima-Brito J (2009) Identification of the spontaneous 7BS/7RL intergenomic translocation in one F1 multigeneric hybrid from the Triticeae tribe. Plant Breed 128:105–108

    Article  CAS  Google Scholar 

  • Carvalho A, Guedes-Pinto H, Lima-Brito J (2013) Polymorphism of the simple sequence repeat (AAC)5 in the nucleolar chromosomes of Old Portuguese wheat cultivars. J Genet 92:583–586

    Article  PubMed  Google Scholar 

  • Castillo A, Ramírez MC, Martín AC, Kilian A, Martín A, Atienza SG (2013) High-throughput genotyping of wheat-barley amphiploids utilising diversity array technology (DArT). BMC Pl Biol 13:87. http://www.biomedcentral.com/1471-2229/13/87

  • Cuadrado A, Jouve N (2010) Chromosomal detection of simple sequence repeats (SSRs) using nondenaturing FISH (ND-FISH). Chromosoma 119:495–503

    Article  PubMed  Google Scholar 

  • Cuadrado A, Schwarzacher T, Jouve N (2000) Identification of different chromatin classes in wheat using in situ hybridization with simple sequence repeat oligonucleotides. Theor Appl Genet 101:711–717

    Article  CAS  Google Scholar 

  • Cuadrado A, Golczyk H, Jouve N (2009) A novel, simple and rapid nondenaturing FISH technique for the detection of plant telomeres. Potential used and possible target structures detected. Chromosome Res 17:755–762

    Article  CAS  PubMed  Google Scholar 

  • Cubero JI, Martín A, Millan T, Gomez-Cabrera A, De Haro A (1986) Tritordeum: a new alloploid of potential importance as a protein source crop. Crop Sci 26:1186–1190

    Article  CAS  Google Scholar 

  • Francki MG (2001) Identification of Bilby, a diverged centromeric Ty1-copia retrotransposon family from cereal rye (Secale cereale L.). Genome 44:266–274

    Article  CAS  PubMed  Google Scholar 

  • Fu S, Chen L, Wang Y, Li M, Yang Z, Qiu L, Yan B, Ren Z, Tang Z (2015) Oligonucleotide probes for ND-FISH Analysis to identify rye and wheat chromosomes. Sci Rep 5:10552

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucl Acids Res 7:1869–1885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heslop-Harrison JS, Harrison GE, Leitch IJ (1992) Reprobing of DNA–DNA in situ hybridization preparations. Trends Genet 8:372–373

    Article  CAS  PubMed  Google Scholar 

  • Komuro S, Endo R, Shikata K, Kato A (2013) Genomic and chromosomal distribution patterns of various repeated DNA sequences in wheat revealed by a fluorescence in situ hybridization procedure. Genome 56:131–137

    Article  CAS  PubMed  Google Scholar 

  • Lima-Brito J, Guedes-Pinto H, Harrison GE, Heslop-Harrison JS (1996) Chromosome identification and nuclear architecture in triticale x tritordeum F1 hybrids. J Exp Bot 47(297):583–588

    Article  CAS  Google Scholar 

  • Lima-Brito J, Guedes-Pinto H, Harrison GE, Heslop-Harrison JS (1997) Molecular cytogenetic analysis of durum wheat × tritordeum hybrids. Genome 40:362–369

    Article  CAS  PubMed  Google Scholar 

  • Lima-Brito J, Guedes-Pinto H, Heslop-Harrison JS (1998) The activity of nucleolar organizing chromosomes in multigeneric F1 hybrids involving wheat, triticale, and tritordeum. Genome 41:763–768

    Article  Google Scholar 

  • Martín A (1988) Tritordeum: the first ten years. Rachis 7:12–15

    Google Scholar 

  • Marín S, Martín A, Barro F (2008) Comparative FISH mapping of two highly repetitive DNA sequences in Hordeum chilense (Roem. et Schult.). Genome 51:580–588

    Article  PubMed  Google Scholar 

  • Martín A, Sanchez-Monge Laguna E (1982) Cytology and morphology of the amphiploid Hordeum chilense × Triticum turgidum conv. durum. Euphytica 31:261–262

    Article  Google Scholar 

  • Martín A, Álvarez JB, Martín LM, Barro F, Ballesteros J (1999) The development of tritordeum: a novel cereal for food processing. J Cereal Sci 30:85–95

    Article  Google Scholar 

  • Martín A, Cabrera A, Hernández P, Ramírez MC, Rubiales D, Ballesteros J (2000) Prospect for the use of Hordeum chilense in durum wheat breeding. In: Royo C, Nachit MM, di Fonzo N, Araus JL (eds) Durum wheat improvement in the Mediterranean region: new challenges, vol 40. IAMZ, Zaragoza, pp 111–115

    Google Scholar 

  • Martín AC, Atienza SG, Ramírez MC, Barro F, Martín A (2008) Male fertility restoration of wheat in Hordeum chilense cytoplasm is associated with 6HchS chromosome addition. Aust J Agric Res 59:206–213

    Article  Google Scholar 

  • McIntyre CL, Pereira S, Moran LB, Appels R (1990) New Secale cereale (rye) DNA derivatives for the detection of rye chromosome segments in wheat. Genome 33(5):635–640

    Article  CAS  PubMed  Google Scholar 

  • Mellado-Ortega E, Hornero-Méndez D (2012) Isolation and identification of lutein esters, including their regioisomers, in tritordeum (× Tritordeum Ascherson et Graebner) grains: evidence for a preferential xanthophyll acyltransferase activity. Food Chem 135:1344–1352

    Article  CAS  PubMed  Google Scholar 

  • Mukai Y, Endo TR, Gill BS (1991) Physical mapping of the 18S.26S rRNA multigene family in common wheat: identification of a new locus. Chromosoma 100:71–78

    Article  CAS  Google Scholar 

  • Navas-Lopez JF, Ostos-Garrido FJ, Castillo A, Martín A, Gimenez MJ, Pistón F (2014) Phenolic content variability and its chromosome location in tritordeum. Front Plant Sci. doi:10.3389/fpls.2014.00010

    PubMed  PubMed Central  Google Scholar 

  • Padilla JA, Martín A (1983) New hybrids between Hordeum chilense and tetraploid wheats. Cereal Res Commun 11:5–7

    Google Scholar 

  • Rayburn AL, Gill BS (1986) Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol Biol Rep 4:102–109

    Article  CAS  Google Scholar 

  • Rubiales D, Ballesteros J, Martín A (1992) Resistance to Septoria tritici in Hordeum chilense and Triticum spp. amphiploids. Plant Breed 109:281–286

    Article  Google Scholar 

  • Rubiales D, Brown JKM, Martín A (1993) Hordeum chilense resistance to powdery mildew and its potential use in cereal breeding. Euphytica 67:215–220

    Article  Google Scholar 

  • Rubiales D, Ramírez MC, Martín A (1996a) Resistance to common bunt in Hordeum chilense × Triticum spp. amphiploids. Plant Breed 115:416–418

    Article  Google Scholar 

  • Rubiales D, Snijders CHA, Nicholson P, Martín A (1996b) Reaction of tritordeum to Fusarium culmorum and Septoria nodorum. Euphytica 88:165–174

    Article  Google Scholar 

  • Schwarzacher T, Heslop-Harrison JS (2000) Practical in situ hybridization. BIOS Scientific Publishers Limited, Oxford. ISBN 185996138 X, 203 p

  • Taketa S, Ando H, Takeda K, von Bothmer R (2001) Physical locations of 5S and 18S-25S rDNA in Asian and American diploid Hordeum species with the I genome. Heredity 86:522–530

    Article  CAS  PubMed  Google Scholar 

  • Tang Z, Yang Z, Fu S (2014) Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J Appl Genet 55:313–318

    Article  CAS  PubMed  Google Scholar 

  • von Bothmer R, Jacobsen N, Baden C, Jorgensen RB, Linde-Laursen I (1995) An ecogeographical study of the genus Hordeum, 2nd edn. Systematic and ecogeographic studies on crop genepools 7, Rome. ISBN-13: 978-92-9043-229-6

Download references

Acknowledgments

This work was partially funded by the International Consortium HY-WHEAT (P-KBBE/AGRGPL/0002/2010), supported by the Portuguese Foundation for Science and the Technology (“Fundação para a Ciência e a Tecnologia” - FCT), “Programa Operacional de Factores Competitividade” (COMPETE), “Quadro de Referência Estratégico Nacional 2007–2013″ (QREN), and “Fundo Europeu de Desenvolvimento Regional” (FEDER) of European Union; and by the project AGL2013-43329-R supported by “Ministerio de Economía y Competitividad” of Spain.

Funding

This work was partially supported by the International Consortium HY-WHEAT (P-KBBE/AGRGPL/0002/2010), funded by the Portuguese Foundation for Science and the Technology (“Fundação para a Ciência e a Tecnologia” - FCT), “Programa Operacional de Factores Competitividade” (COMPETE), “Quadro de Referência Estratégico Nacional 2007–2013″ (QREN), and “Fundo Europeu de Desenvolvimento Regional” (FEDER) of European Union; and by the project AGL2013-43329-R funded by “Ministerio de Economía y Competitividad” of Spain.

Authors’ contribution

The authors have made the following declarations regarding their contributions: Conceived and designed the experiments: JLB and AC. Performed the experiments: AD and AC. Analyzed the data: AD, AC, JLB. Contributed with plant material/reagents/analysis tools: ACM, AM, JLB. Contributed to the writing of the manuscript: all authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Lima-Brito.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delgado, A., Carvalho, A., Martín, A.C. et al. Use of the synthetic Oligo-pTa535 and Oligo-pAs1 probes for identification of Hordeum chilense-origin chromosomes in hexaploid tritordeum. Genet Resour Crop Evol 63, 945–951 (2016). https://doi.org/10.1007/s10722-016-0402-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-016-0402-3

Keywords

Navigation