Skip to main content
Log in

Molecular systematics of Abelmoschus (Malvaceae) and genetic diversity within the cultivated species of this genus based on nuclear ITS and chloroplast rpL16 sequence data

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The genus Abelmoschus includes several crop plants which are especially important in SE Asia and several African countries. However, the systematic treatment of this genus is difficult, in part because hybridization between different forms seems to be frequent. In this study we present nuclear internal transcribed spacer ITS and chloroplast rpL16 sequences with the aim of reconstructing phylogenetic relationships within Abelmoschus, and its relationship with the genus Hibiscus and other related Malvaceae. Based on our analysis of nuclear ITS and chloroplast rpL16 sequence data, Abelmoschus is resolved as a monophyletic clade. Abelmoschus tetraphyllus is clearly separated from A. manihot but closely related to A. ficulneus and should not be treated as a subspecies of A. manihot. None of the wild species included in this study can be confirmed as an ancestor of A. esculentus or A. caillei. Neither A. esculentus nor A. caillei can be distinguished from each other by the markers used for this study, although the evidence does not exclude the possibility of a hybrid origin of A. caillei involving A. esculentus and an unknown species. The genetic diversity within A. esculentus and A. caillei is low if compared with A. manihot. The evidence presented here does not allow us to draw any conclusions about the geographic origin (Africa vs. Asia) of A. esculentus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agharkar SP (1991) Medicinal plants of bombay presidency. Scientific Publishers, Jodhpur

    Google Scholar 

  • Aladele S, Ariyo OJ, de Lapena R (2008) Genetic relationships among West African okra (Abelmoschus caillei) and Asian genotypes (Abelmoschus esculentus) using RAPD. Afr J Biotechnol 7:1426–1431. doi:10.5897/AJB08.006

    CAS  Google Scholar 

  • Arnheim N, Krystal M, Schmickel R, Wilson G, Ryder O, Zimmer E (1980) Molecular evidence for genetic exchanges among ribosomal genes on non-homologous chromosomes in man and apes. Proc Natl Acad Sci USA 77:7323–7327

  • Baum DA, Small RL, Wendel JF (1998) Biogeography and floral evolution of baobabs (Adansonia, Bombacaceae) as inferred from multiple data sets. Syst Biol 47:181–207. doi:10.1080/106351598260879

    Article  CAS  PubMed  Google Scholar 

  • Benchasri S (2012) Okra (Abelmoschus esculentus (L.) Moench) as a valuable vegetable of the world. Retar Povrt 49:105–112. doi:10.5937/ratpov49-1172

    Article  Google Scholar 

  • Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2005) GenBank. Nucl Acids Res 33 (Database issue):D34–D38. doi:10.1093/nar/gki063

  • Bown D (1995) Encyclopaedia of herbs and their uses. Dorling Kindersley, London

    Google Scholar 

  • Bruen TC, Philippe H, Bryant D (2006) A simple and robust statistical test for detecting the presence of recombination. Genetics 172:2665–2681. doi:10.1534/genetics.105.048975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckler E, Thornsberry JM, Kresovich S (2001) Molecular diversity, structure and domestication of grasses. Genet Res 77:213–218. doi:10.1017/S0016672301005158

    Article  CAS  PubMed  Google Scholar 

  • Charrier A (1984) Genetic resources of the genus Abelmoschus Med. (Okra). International Board for Plant Genetic Resources Secretariat, Rome

  • Correns C (1909) Zur Kenntnis der Rolle von Kern und Plasma bei der Vererbung. Zeitschrift für induktive Abstammungs- und Vererbungslehre 1:291–329

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772. doi:10.1093/bioinformatics/btu032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davey JW, Blaxter ML (2010) RADSeq: next-generation population genetics. Brief Funct Genomics 9(5–6):416–423. doi:10.1093/bfgp/elq031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21. doi:10.1007/BF02712670

    Article  CAS  Google Scholar 

  • Duarte MC, Esteves GL, Salatino MLF, Walsh KC, Baum DA (2011) Phylogenetic analyses of Eriotheca and related genera (Bombacoideae, Malvaceae). Syst Bot 36:690–701. doi:10.1600/036364411X583655

    Article  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6(5):e19379. doi:10.1371/journal.pone.0019379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engels JMM, Ebert AW, Thormann I, de Vicente MC (2006) Centers of crop diversity and/or origin, genetically modified crops and implications for plant genetic resources conservation. Genet Resour Crop Evol 53:1675–1688. doi:10.1007/s10722-005-1215-y

    Article  Google Scholar 

  • Facciola S (2001) Cornucopia II—a source book of edible plants. Kampong Publications, Vista

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (2014) FAOSTAT web. http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor. Accessed 4 Dec 2014

  • Gadwal VR, Joshi AB, Iyer RD (1968) Interspecific hybrids in Abelmoschus through ovule and embryo culture. Indian J Genet Plant Breed 28:269–274

    Google Scholar 

  • Germplasm Resources Information Network (GRIN) Database of the United States Department of Agriculture (2015) http://www.ars-grin.gov/

  • Gulsen O, Karagul S, Abak K (2007) Diversity and relationships among Turkish okra germplasm by SRAP and phenotypic marker polymorphism. Biologia (Bratislava) 62:41–45. doi:10.2478/s11756-007-0010-y

    Article  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hamon S (1988) Organisation évolutive du genre Abelmoschus (gombo). Coadaptation et evolution de deux espèces de gombo cultivées en Afrique de l'Ouest, A. esculentus et A. caillei. Travaux et documents microédités 46 de l’ Office de la Recherche Scientifique et Technique Outre-Mer, Paris, France

  • Hamon S, Koechlin J (1991) The reproductive biology of okra. 1. Study of the breeding system in four Abelmoschus species. Euphytica 53:41–48. doi:10.1007/BF00032032

    Article  Google Scholar 

  • Hamon S, van Sloten DH (1989) Characterization and evaluation of Okra. In: Brown AD, Frankel O (eds) The use of crop genetic resources. Cambridge University Press, Cambridge, pp 173–196

    Google Scholar 

  • Hamon S, van Sloten DH (1995) Okra. In: Smartt J, Simmonds NW (eds) Evolution of crop plants, 2nd edn. Longman, London, pp 350–357

    Google Scholar 

  • Hamon S, Yapo A (1985) Perturbations induced within the genus Abelmoschus by the discovery of a second edible okra species in West Africa. Acta Hortic 182:133–144

    Google Scholar 

  • Hardas MW, Joshi AB (1954) A note on the chromosome numbers of some plants. Indian J Genet Plant Breed 14:47–49

    Google Scholar 

  • Hochreutiner BPG (1924) Genres nouveaux et genres discutés de la famille des Malvacées. Candollea 2:79–90

    Google Scholar 

  • Huelsenbeck JP, Larget B, Alfaro ME (2004) Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo. Mol Biol Evol 21:1123–1133. doi:10.1093/molbev/msh123

    Article  CAS  PubMed  Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267. doi:10.1093/molbev/msj030

    Article  CAS  PubMed  Google Scholar 

  • Johnson LA, Soltis DE (2000) Assessing incongruence: empirical examples from molecular data. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants II: DNA sequencing. Kluwer Academic Publishers, Norwell, pp 297–348

    Google Scholar 

  • Joshi AB, Hardas MW (1976) Okra. In: Simmonds NW (ed) Evolution of crop plants. Longman, London, pp 194–195

    Google Scholar 

  • Joshi AB, Gadval VR, Hardas MW (1974) Evolutionary studies in world crops. In: Hutchinson JB (ed) Diversity and change in the Indian sub-continent. Cambridge University Press, London, pp 99–105

    Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. doi:10.1093/molbev/mst010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Dagnoko S, Haougui A, Ratnadass A, Pasternak D, Kouame C (2010) Okra (Abelmoschus spp.) in West and Central Africa: potential and progress on its improvement. Afr J Agric Res 5:3590–3598. doi:10.5897/AJAR10.839

    Google Scholar 

  • Kuwada H (1957) Crosscompatibility in the reciprocal crosses between amphidiploids and its parents (Abelmoschus esculentus and A. manihot) and the characters and meiotic divisions in hybrids obtained among them. Jpn J Breed 7:103–111. doi:10.1270/jsbbs1951.7.103

    Article  Google Scholar 

  • Kuwada H (1961) Studies on interspecific crossing between Abelmoschus esculentus (L.) Moench and A. manihot (L.) Medikus, and the various hybrids and polyploids derived from the above two species. Mem Fac Agric Kagawa Univ 8:1–91

    Google Scholar 

  • Lamont W (1999) Okra a versatile vegetable crop. Hort Technol 9:179–184

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452. doi:10.1093/bioinformatics/btp187

    Article  CAS  PubMed  Google Scholar 

  • Manandhar NP (2002) Plants and people of Nepal. Timber Press, Portland

    Google Scholar 

  • Martin FW, Rhodes AM, Manuel O, Díaz F (1981) Variation in okra. Euphytica 30:699–705. doi:10.1007/BF00038798

    Article  Google Scholar 

  • Müller K (2004) SeqState. Appl Bioinform 4:65–69. doi:10.2165/00822942-200504010-00008

    Article  Google Scholar 

  • National Research Council of the National Academies (2006) Lost crops of Africa. Volume II: vegetables. The National Academies Press, Washington, DC

  • Ochsmann J, Biermann N, Knüpfer H, Bachmann K (1999) Aufbau einer WWW-Datenbank zu “Mansfeld’s World Manual of Agricultural and Horticultural Crops”. Schriften Genet Ressourcen 12:57–63

    Google Scholar 

  • Pal BP, Singh HB, Swarup V (1952) Taxonomic relationships and breeding possibilities of species of Abelmoschus related to okra (A. esculentus). Bot Gaz 113:455–464. doi:10.1086/335734

    Article  Google Scholar 

  • Petit RJ, Kremer A, Wagner DB (1993) Finite island model for organelle and nuclear genes in plants. Heredity 71:630–641. doi:10.1046/j.1365-2540.2001.00922.x

    Article  Google Scholar 

  • Pfeil BE, Crisp MD (2005) What to do with Hibiscus? A proposed nomenclatural resolution for a large and well known genus of Malvaceae and comments on paraphyly. Aust Syst Bot 18:49–60. doi:10.1071/SB04024

    Article  Google Scholar 

  • Pfeil BE, Brubaker CL, Craven LA, Crisp MD (2002) Phylogeny of Hibiscus and the tribe Hibisceae (Malvaceae) using chloroplast DNA sequences of ndhF and the rpL16 intron. Syst Bot 27:333–350. doi:10.1043/0363-6445-27.2.333

    Google Scholar 

  • Prakash K, Pitchaimuthu M, Ravishankar KV (2011) Assessment of genetic relatedness among okra genotypes [Abelmoschus esculentus (L.) Moench] using RAPD markers. Electr J Plant Breed 2:80–86

    Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A (2012) MrBayes3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. doi:10.1093/sysbio/sys029

    Article  PubMed  PubMed Central  Google Scholar 

  • Salameh NM (2014) Genetic diversity of okra (Abelmoschus esculentus L.) genotypes from different agro-ecological regions revealed by amplified fragment length polymorphism analysis. Am J Appl Sci 11:1157–1163. doi:10.3844/ajassp.2014.1157.1163

    Article  Google Scholar 

  • Salamini F, Ozkan H, Brandolini A, Schäfer-Pregl R, Martin W (2002) Genetics and geography of wild cereal domestication in the Near East. Nat Rev Genet 3:429–441. doi:10.1038/nrg817

  • Sawadogo M, Ouedraogo JT, Balma D, Ouedraogo M, Gowda BS, Botanga Ch, Timko MP (2009) The use of cross species SSR primers to study genetic diversity of okra from Burkina Faso. Afr J Biotechnol 8:2476–2482

    CAS  Google Scholar 

  • Schafleitner R, Kumar S, Lin CY, Hedge SG, Ebert A (2013) The okra (Abelmoschus esculentus) transcriptome as a source of gene sequence information and molecular markers for diversity analysis. Gene 517:27–36. doi:10.1016/j.gene.2012.12.098

    Article  CAS  PubMed  Google Scholar 

  • Seelanan T, Schnabel A, Wendel JF (1997) Congruence and consensus in the cotton tribe (Malvaceae). Syst Bot 22:259–290. doi:10.2307/2419457

    Article  Google Scholar 

  • Septiningsih EM, Prasetiyono J, Lubis E, Tai TH, Tjubaryat T, Moeljopawiro S, McCouch SR (2003) Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107:1419–1432. doi:10.1007/s00122-003-1373-2

    Article  CAS  PubMed  Google Scholar 

  • Siemonsma JS (1982) West African okra - morphological and cytogenetical indications for the existence of a natural amphidiploid of Abelmoschus esculentus (L.) Moench and A. manihot (L.) Medikus. Euphytica 31:241–252. doi:10.1007/BF00028327

    Article  Google Scholar 

  • Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381. doi:10.1093/sysbio/49.2.369

    Article  CAS  PubMed  Google Scholar 

  • Singh U, Wadhwani AM, Johri BM (1996) Dictionary of economic plants in India. Indian Council of Agricultural Research, New Delhi

    Google Scholar 

  • Small RL (2004) Phylogeny of Hibiscus sect. Muenchhusia (Malvaceae) based on chloroplast rpL16 and ndhF, and nuclear ITS and GBSSI sequences. Syst Bot 29:385–392. doi:10.1600/036364404774195575

    Article  Google Scholar 

  • Soltis DE, Mavrodiev EV, Doyle JJ, Rauscher J, Soltis PS (2008) ITS and ETS sequence data and phylogeny reconstruction in allopolyploids and hybrids. Syst Bot 33:7–20. doi:10.1600/036364408783887401

    Article  Google Scholar 

  • Stevels JMC (1988) Une nouvelle combinaison dans Abelmoschus Medik. (Malvaceae), un gombo d’Afrique de l’Ouest et Centrale. Bull Mus Nat Hist Nat B Adansonia 10:137–144

    Google Scholar 

  • Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tate JA, Fuertes Aguilar J, Wagstaff SJ, La Duke JC, Bodo Slotta TA, Simpson BB (2005) Phylogenetic relationships within the tribe Malveae (Malvaceae, subfamily Malvoideae) as inferred from ITS sequence data. Am J Bot 92:584–602. doi:10.3732/ajb.92.4.584

    Article  CAS  PubMed  Google Scholar 

  • Todarwal A, Jain P, Bar S (2011) Abelmoschus manihot Linn.: ethnobotany, phytochemistry and pharmacology. Asian J Tradit Med 6:1–7

  • Ugale SD, Patil RC, Khupse SS (1976) Cytogenetic studies in the cross between Abelmoschus esculentus and A. tetraphyllus. J Maharashtra Agric Univ 1:106–110

    Google Scholar 

  • van Borssum-Waalkes J (1966) Malaysian Malvaceae revised. Blumea 14:1–251

    Google Scholar 

  • Vavilov NI (1926) Studies on the origin of cultivated plants. Bull Appl Bot Plant Breed (Leningrad) 16(2):1–248

    Google Scholar 

  • Wendel JF, Doyle JJ (2000) Phylogenetic incongruence: window into genome history and molecular evolution. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants II: DNA sequencing. Kluwer Academic Publishers, Norwell, pp 265–296

    Google Scholar 

  • Wendel JF, Schnabel A, Seelanan T (1995) Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc Natl Acad Sci USA 92:280–284. doi:10.1073/pnas.92.1.280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White T (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Wright SI, Bi IV, Schroeder SG, Yamasaki M, Doebley JF, McMullen MD, Gaut BS (2005) The effects of artificial selection on the maize genome. Science 308:1310–1314. doi:10.1126/science.1107891

    Article  CAS  PubMed  Google Scholar 

  • Xu J (2005) The inheritance of organelle genes and genomes: patterns and mechanisms. Genome 48:951–958. doi:10.1139/g05-082

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the United States Department of Agriculture, Agricultural Research Service (USDA, ARS), J. K. Ahiakpa (University of Ghana-Legon, Ghana) and Dr. D. Achel (Ghana Atomic Energy Commission) for donating samples for this study. The authors also thank the Science and Technology Development Fund (STDF), The Egyptian Ministry of Scientific Research, for granting M. Magdy (Grant ID: 6559). This research was partly funded by the Spanish Ministry of Science and Innovation (Project CGL2011-22936/BOS) and by European Regional Development Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Werner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Werner, O., Magdy, M. & Ros, R.M. Molecular systematics of Abelmoschus (Malvaceae) and genetic diversity within the cultivated species of this genus based on nuclear ITS and chloroplast rpL16 sequence data. Genet Resour Crop Evol 63, 429–445 (2016). https://doi.org/10.1007/s10722-015-0259-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-015-0259-x

Keywords

Navigation