Skip to main content
Log in

Stem and leaf rust resistance in wild relatives of wheat with D genome (Aegilops spp.)

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Resistance to stem rust and leaf rust in five D genome species of wheat viz., 267 accessions of Aegilops tauschii Coss., 39 of Ae. cylindrica Host, 17 of Ae. ventricosa Tausch, 4 of Ae. crassa Boiss. and 8 of Ae. juvenalis (Thell.) Eig were evaluated at adult plant stage. Two hundred and thirty nine (90 %) accessions of Ae. tauschii, 30 (77 %) of Ae. cylindrica, 16 (94 %) of Ae. ventricosa, 3 (75 %) of Ae. crassa Boiss. and 5 (62.5 %) of Ae. juvenalis were resistant to stem rust pathotypes prevalent in South India at Wellington under field condition. Invariably, all the accessions of the five species were resistant to leaf rust pathotypes. Quantitative measurement of disease using area under the disease progress curve revealed the slow progress of disease in the resistant accessions compared to susceptible check (Agra Local). Since all the five species have D genome, it could be concluded that the genes present in D genome might play a vital role in leaf rust resistance, but in case of stem rust resistance wide range of differential response was noticed. Among the species evaluated, Ae. tauschii was exploited to a larger extent, followed by Ae. ventricosa and Ae. cylindrica for leaf and stem rust resistance because of the homology of D genome with hexaploid bread wheat. While, Ae. crassa and Ae. juvenalis could not be utilized so far, possibly due to partial homology which makes the transfer of traits difficult. So, these species have considerable potential as a source of rust resistance and may enhance the existing gene pool of resistance to stem and leaf rusts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Assefa S, Fehrmann H (2000) Resistance to wheat leaf rust in Aegilops tauschii Coss. & inheritance of resistance genes in hexaploid wheat. Genet Resour Crop Evol 47:395–398

    Article  Google Scholar 

  • Assefa S, Fehrmann H (2004) Evaluation of Aegilops tauschii Coss. for resistance to wheat stem rust and inheritance of resistance genes in hexaploid wheat. Genet Resour Crop Evol 51:663–669

    Article  CAS  Google Scholar 

  • Badaeva ED, Amosova AV, Muvavenko OV, Samatadze TE (2002) Genome differentiation in Aegilops. 3. Evolution of the D-genome cluster. Plant Syst Evol 231:163–190

    Article  CAS  Google Scholar 

  • Bai D, Knott DR (1992) Suppression of rust resistance in bread wheat (Triticum aestivum L.) by D-genome chromosomes. Genome 35:276–282

    Article  Google Scholar 

  • Bordbar F, Rahiminejad MR, Saeidi H, Blattner FR (2011) Phylogeny and genetic diversity of D-genome species of Aegilops and Triticum (Triticeae, Poaceae) from Iran based on microsatellites, ITS, and trnL-F. Plant Syst Evol 291:117–131

    Article  Google Scholar 

  • Chen W, Liu T, Gao L (2013) Suppression of stripe rust and leaf rust resistances in interspecific crosses of wheat. Euphytica 192:339–346

    Article  CAS  Google Scholar 

  • Chevre AM, Jahier J, Trottet M (1989) Expression of disease resistance genes in amphiploid wheats-Triticum tauschii (Coss.) Schmal. Cereal Res Commun 17:23–29

    Google Scholar 

  • Cox TS, Raupp WJ, Wilson DL, Gill BS, Leath S, Bockus WW, Browder LE (1992) Resistance to foliar diseases in the collection of Triticum tauschii germplasm. Plant Dis 76:1061–1064

  • Cox TS, Raupp WJ, Gill BS (1994) Stem rust resistance genes Lr41, Lr42 and Lr43 transferred from Triticum tauschii to common wheat. Crop Sci 34:339–343

    Article  Google Scholar 

  • Dorofeev VF, Filatenko AA, Migushova EF, Udacin RA, Jakubciner RR (1979) Psenica (Wheat). Kul’turnaja flora SSSR, vol 1. Kolos, Leningrad

    Google Scholar 

  • Dvorak J, Luo MC, Yang ZL, Zhang HB (1998) The structure of the Aegilops tauschii gene pool and the evolution of hexaploid wheat. Theor Appl Genet 97:657–670

    Article  CAS  Google Scholar 

  • Dyck PL, Kerber ER (1970) Inheritance in hexaploid wheat of adult-plant leaf rust resistance derived from Aegilops squarrosa. Can J Genet Cytol 12:175–180

    Google Scholar 

  • Feldman M, Sears ER (1981) The wild gene resources of wheat. Sci Am 244:102–112

    Article  Google Scholar 

  • Gill BS, Raupp WJ, Sharma HC, Browder LE, Hatchett JH, Harvey TL, Moseman JG, Waines JG (1986) Resistance in Aegilops squarrosa to wheat leaf rust, wheat powdery mildew, greenbug, and Hessian fly. Plant Dis 70:553–556

    Article  Google Scholar 

  • Gupta PK, Roy JK, Prasad M (2001) Single nucleotide polymorphisms: a new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Curr Sci 80:524–535

    CAS  Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13

    Article  Google Scholar 

  • Hammer K, Filatenko AA, Pistrick K (2011) Taxonomic remarks on Triticum L. and Triticosecale Wittm. Genet Resour Crop Evol 58:3–10

    Article  Google Scholar 

  • Hiebert CW, Thomas JB, Somers DJ, McCallum BD, Fox SL (2007) Microsatellite mapping of adult-plant leaf rust resistance gene Lr22a in wheat. Theor Appl Genet 115:877–884

    Article  CAS  PubMed  Google Scholar 

  • Hoisington D, Khairallah M, Reeves T, Ribaut JM, Skovmand B, Taba S, Warburton M (1999) Plant genetic resources: what can they contribute towards increased crop productivity? PNAS 96:5937–5943

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang L, Gill BS (2001) An RGA-like marker detects all known Lr21 leaf rust resistance gene family members in Aegilops tauschii and wheat. Theor Appl Genet 103:1007–1013

    Article  CAS  Google Scholar 

  • Hussien T, Bowden RL, Gill BS, Cox TS (1997) Chromosome location of leaf rust resistance gene Lr43 from Aegilops tauschii in common wheat. Crop Sci 37:1764–1766

  • Jauhar PP (1993) Alien gene transfer and genetic enrichment of bread wheat. In: Damania AB (ed) Biodiversity and wheat improvement. Wiley, Chichester, pp 103–119

    Google Scholar 

  • Johnson R (1981) Durable resistance: definition, genetic control and attainment in plant breeding. Phytopathol 71:567–568

    Google Scholar 

  • Kema GHJ, Lange W (1992) Race-specific suppression of resistance to yellow rust in synthetic hexaploids of wheat. In: Zeller FJ, Fischbeck G (eds) Proceeding of the 8th European and Mediterranean cereal rusts and mildews conference, Vorträge Pflanzenzüchtg, Weihenstephan 24, p 206

  • Kerber ER (1983) Suppression of rust resistance in amphiploids of Triticum. In: Proceeding of the 6th international wheat genetics symposium, Kyoto, pp 813–817

  • Kerber ER (1987) Resistance to leaf rust in hexaploid wheat: Lr32, a third gene derived from Triticum tauschii Coss. Crop Sci 27:204–206

    Article  Google Scholar 

  • Kerber ER (1991) Stem-rust resistance in Canthatch hexaploid wheat induced by a non-suppressor mutation on chromosome 7DL. Genome 34:935–939

    Article  Google Scholar 

  • Kerber ER, Dyck PL (1969) Inheritance in hexaploid wheat of leaf rust resistance and other characters derived from Aegilops squarrosa. Can J Genet Cytol 11:639–647

    Google Scholar 

  • Kerber ER, Dyck PL (1973) Inheritance of stem rust resistance transferred from diploid wheat (Triticum monococcum) to tetraploid and hexaploid wheat and chromosome location of the gene involved. Can J Genet Cytol 15:397–409

    Google Scholar 

  • Kerber ER, Dyck PL (1978) Resistance to stem and leaf rust in Aegilops squarrosa and transfer of a gene for stem rust resistance to hexaploid wheat. In: Ramanujam S (ed) Proceeding of the 5th international wheat genetics symposium, vol 1. New Delhi, pp 358–364

  • Kerber ER, Green GJ (1980) Suppression of stem rust resistance in the hexaploid wheat cv. Canthatch by chromosome 7DL. Can J Bot 58:1347–1350

    Article  Google Scholar 

  • Kihara K, Yamashita K, Tanaka M (1965) Morphological, physiological, genetical and cytological studies in Aegilops and Triticum collected from Pakistan, Afghanistan and Iran. In: Results of the Kyoto University Scientific Expedition to the Karakoram and Hindukush, vol 1, pp 1–118

  • Kilian B, Mammen K, Millet E, Sharma R, Graner A, Salamini F, Hammer K, Ozkan H (2011) Aegilops. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, Cereals. Springer, Berlin, pp 1–76

    Chapter  Google Scholar 

  • Kimber G (1993) Genomic relationships in Triticum and the availability of alien germplasm. In: Damania AB (ed) Biodiversity and wheat improvement. Wiley, Chichester, pp 9–16

    Google Scholar 

  • Kimber G, Zhao YH (1983) The D genome of the Triticeae. Can J Genet Cytol 25:581–589

    Google Scholar 

  • Knott DR (1978) The transfer of genes for rust resistance to wheat from related species. In: Ramanujam S (ed) Proceeding of the 5th international wheat genetics symposium, vol 1. New Delhi, pp 358–364

  • Koebner R, Summers R (2002) The impact of molecular markers on the wheat breeding program. Cell Mol Biol Lett 7:695–702

    CAS  PubMed  Google Scholar 

  • Loegering WO (1959) Methods for recording cereal rust data. International Spring Wheat Rust Severity, USA

    Google Scholar 

  • Ma H, Singh RP, Mujeeb-Kazi A (1995) Resistance to stripe rust in Triticum turgidum, T. tauschii and their synthetic hexaploids. Euphytica 82:117–124

    Article  Google Scholar 

  • May CE, Lagudah ES (1992) Inheritance in hexaploid wheat of Septoria tritici blotch resistance and other characteristics derived from Triticum tauschii. Aust J Agric Res 43:433–442

    Article  Google Scholar 

  • McFadden ES (1930) A successful transfer of emmer characters to vulgare wheat. J Am Soc Agron 22:1020–1034

    Article  Google Scholar 

  • McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts—an atlas of resistance genes. Kluwer Academic, Dor-drecht

    Google Scholar 

  • Mujeeb-Kazi A, Rosas V, Roldan S (1996) Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct. non. L) in synthetic hexaploid wheats (T. turgidum L. s. lat. T. tauschii; 2n = 6x = 42, AABBDD) and its potential utilization for wheat improvement. Genet Resour Crop Evol 43:129–134

    Article  Google Scholar 

  • Mujeeb-Kazi A, Gilchrist L, Fuentes-Davila G, Delgado R (1998) Production and utilization of D genome synthetic hexaploids in wheat improvement. In: Jaradat AA (ed) Triticeae III. Science, Enfield, NH, pp 369–374

    Google Scholar 

  • Parlevliet JE (1983) Durable resistance in self-fertilizing annuals. In: Lamberti F, Waller JM, Vander Graaff AN (eds) Durable Resistance in Crops. Plenum, New York, pp 347–362

  • Parlevliet JE (1985) Resistance of the non race-specific type. In: Roelfs AP, Bushnell WR (eds) The cereal rusts II. Academic Press, New York, pp 501–525

    Google Scholar 

  • Parlevliet JE, van Ommeren A (1975) Partial resistance of barley to leaf rust, Puccinia hordei. II. Relationship between field trials, micro plot tests and latent period. Euphytica 24:293–303

    Article  Google Scholar 

  • Petersen G, Seberg O, Yde M, Berthelsen K (2006) Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Mol Phylogenet Evol 39:70–82

    Article  CAS  PubMed  Google Scholar 

  • Peterson AF, Campbell AB, Hannah AE (1948) A diagrammatic scale for estimating rust severity on leaves and stems of cereals. Can J Res C 26:496–500

    Article  Google Scholar 

  • Rajaram S (1972) Method for detection and evaluation of adult plant resistance to Puccinia graminis tritici in wheat. In: Proceedings of the European and mediterranean cereal rusts conference. Prague, Czechoslovakia, pp 203–208

  • Raupp WJ, Sukhwinder-Singh Brown-Guedira GL, Gill BS (2001) Cytogenetic and molecular mapping of the leaf rust resistance gene Lr39 in wheat. Theor Appl Genet 102:347–352

    Article  CAS  Google Scholar 

  • Rayburn AL, Gill BS (1987) Molecular analysis of the D-genome of the Triticeae. Theor Appl Genet 73:385–388

    Article  CAS  PubMed  Google Scholar 

  • Rowland GG, Kerber ER (1974) Telocentric mapping in hexaploid wheat of genes for leaf rust resistance and other characters derived from Aegilops squarrosa. Can J Genet Cytol 16:137–144

    Google Scholar 

  • Sambasivam PK, Bansal UK, Hayden MJ2, Dvorak J, Lagudah ES, Bariana HS (2008) Identification of markers linked with stem rust resistance genes Sr33 and Sr45. In: Appels R, Eastwood R, Lagudah E, Langridge P, Lynne MM (eds) 11th international wheat genetics symposium proceedings, Brisbane

  • Sears ER (1982) Transfer of alien genetic material to wheat. In: Evans LT, Peacock WJ (eds) Wheat Science—today and tomorrow. Cambridge University Press, Cambridge, MA, pp 75–89

    Google Scholar 

  • Siedler HA, Obstz SL, Sam KH, Zeller FJ (1994) Evaluation for resistance to Pyrenophora tritici-repentis in Aegilops tauschii Coss. and synthetic hexaploid wheat amphiploids. Genet Resour Crop Evol 41:27–34

    Article  Google Scholar 

  • Simon MR, Worland AJ, Cordo CA, Struik PC (2001) Chromosomal location of resistance to Septoria tritici in seedlings of a synthetic hexaploid wheat, Triticum spelta and two cultivars of Triticum aestivum. In: Bedo Z, Lang L (eds) Wheat in a global environment. Proceedings of the sixth international wheat conference, Budapest, pp 405–410

  • Singh RP, Huerta-Espino J, Rajaram S (2000) Achieving near immunity to leaf and stripe rusts in wheat by combining slow rusting resistance genes. Acta Phytopathologica et Entomologica Hungarica 35:133–139

    CAS  Google Scholar 

  • Thomas J, Nilmalgoda S, Hiebert C, McCallum B, Humphreys G, DePauw R (2010) Genetic markers and leaf rust resistance of the wheat gene Lr32. Crop Sci 50:2310–2317

    Article  Google Scholar 

  • Tiwari V, Chatrath R, Singh G, Kumar R et al. (2012) All India coordinated wheat and barley improvement project. Progress report-2011-12, crop improvement, directorate of wheat research (DWR), Karnal, vol 1, p 308

  • Tomar SMS, Kochumadhavan M (1993) Evaluation and hybridisation of closely and distantly related species of wheat for disease resistance. In: Proceedings of the national symposium on plant breeding strategies for India, 2000 A.D. and beyond. Indian Society of Plant Breeding and Genet, Aurangabad, pp 66–68

  • Tomar SMS, Kochumadhavan M (1996) Genetic resources for disease resistance in wild diploid Triticum and Aegilops spp. Indian J Pl Genet Resour 9:53–61

    Google Scholar 

  • Trottet JJ, Jahier, Tanguy AM (1982) A study of an amphiploid between Aegilops squarrosa Tausch and Triticum dicoccum Schubl. Cereal Res Commun 10:55–59

  • Valkoun JJ (2001) Wheat pre-breeding using wild progenitors. Euphytica 119:17–23

    Article  Google Scholar 

  • Valkoun JJ, Dostal, Kucerova D (1990) Triticum ×Aegilops hybrids through embryo culture. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Springer, Berlin, pp 152–166

    Google Scholar 

  • van Slageren MW (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. et Spach) Eig (Poaceae). Wageningen Agricultural University, Wageningen and ICARDA, Aleppo

  • Vanderplank JE (1963) Plant diseases: epidemics and control. Academic Press, New York

    Google Scholar 

  • Vanderplank JE (1982) Host-pathogen interactions in plants disease. Academic Press, London

    Google Scholar 

  • Wilcoxson RD, Skovmand B, Atif AH (1975) Evaluation of wheat cultivars for ability to retard development of stem rust. Ann Appl Biol 80:275–281

    Article  Google Scholar 

  • Yang WX, Yen C, Yang JL, Zheng YL, Liu DC (1998) Evaluation of Aegilops tauschii Coss. for resistance to physiological strains CYR30 and CYR31 of wheat stripe rust in China. Genet Resour Crop Evol 45:395–398

    Article  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

  • Zaharieva M, Monneveux P, Henry M, Rivoal R, Valkoun J, Nachit MM (2001) Evaluation of a collection of wild wheat relative Aegilops geniculata Roth and identification of potential sources for useful traits. Euphytica 119:33–38

    Google Scholar 

Download references

Acknowledgments

Authors thank Director and Joint Director (Research), I.A.R.I., New Delhi, for constant encouragement and support. Authors would also gratefully acknowledge National Initiative on Climate Resilient Agriculture (NICRA) for the financial support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Vikas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vikas, V.K., Sivasamy, M., Kumar, J. et al. Stem and leaf rust resistance in wild relatives of wheat with D genome (Aegilops spp.). Genet Resour Crop Evol 61, 861–874 (2014). https://doi.org/10.1007/s10722-014-0085-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-014-0085-6

Keywords

Navigation