Skip to main content
Log in

Exploitation of Malus EST-SSRs and the utility in evaluation of genetic diversity in Malus and Pyrus

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

A total of 8117 suitable SSR-contaning ESTs were acquired by screening from a Malus EST database, among which dinudeotide SSRs were the most abundant repeat motif, within which, CT/TC followed by AG/GA were predominant. Based on the suitable sequences, we developed 147 SSR primer pairs, of which 94 pairs gave amplifications within the expected size range while 65 pairs were found to be polymorphic after a preliminary test. Eighteen primer pairs selected randomly were further used to assess genetic relationship among 20 Malus species or cultivars. As a result, these primers displayed high level of polymorphism with a mean of 6.94 alleles per locus and UPGMA cluster analysis grouped twenty Malus accessions into five groups at the similarity level of 0.6800 that were largely congruent to the traditional taxonomy. Subsequently, all of the 94 primer pairs were tested on four accessions of Pyrus to evaluate the transferability of the markers, and 40 of 72 functional SSRs produced polymorphic amplicons from which 8 SSR loci selected randomly were employed to analyze genetic diversity and relationship among a collection of Pyrus. The 8 primer pairs produced expected bands with the similar size in apples with an average of 7.375 alleles per locus. The observed heterozygosity of different loci ranged from 0.29 (MES96) to 0.83 (MES138), with a mean of 0.55 which is lower than 0.63 reported in genome-derived SSR marker analysis in Pyrus. The UPGMA dendrogram was similar to the previous results obtained by using RAPD and AFLP markers. Our results showed that these EST-SSR markers displayed reliable amplification and considerable polymorphism in both Malus and Pyrus, and will contribute to the knowledge of genetic study of Malus and genetically closed genera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bao L, Chen KS, Zhang D, Cao YF, Yamamoto T, Teng Y (2007) Genetic diversity and similarity of pear (Pyrus L.) cultivars native to East Asia revealed by SSR (simple sequence repeat) markers. Genet Resour Crop Evol 54:959–971

    Article  CAS  Google Scholar 

  • Bao L, Chen KS, Zhang D, Li XG, Teng Y (2008) An assessment of genetic variability and relationships within Asian pears based on AFLP (amplified fragment length polymorphism) markers. Sci Hortic 116:374–380

    Article  CAS  Google Scholar 

  • Barrett B, Griffiths A, Schreiber M, Ellison N, Mercer C, Bouton J, Ong B, Forster J, Sawbridge T, Spangenberg G, Bryan G, Woodfield D (2004) A microsatellite map of white clover. Theor Appl Genet 109:596–608

    CAS  PubMed  Google Scholar 

  • Bassil N, Postman JD (2010) Identification of European and Asian pears using EST-SSRs from Pyrus. Genet Resour Crop Evol. doi:10.1007/s10722-009-9474-7

  • Bell RL, Quamme HA, Layne REC, Skirvin RM (1996) Pears. In: Janick J, Moore JN (eds) Fruit breeding, tree and tropical fruits, vol 1. John Wiley, London, pp 441–514

    Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    CAS  PubMed  Google Scholar 

  • Celton JM, Tustin DS, Chagné D, Gardiner SE (2008) Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from Malus ESTs and Pyrus genomic sequences. Tree Genet Genomes 2:86–97. doi:10.1007/s11295-008-0171-z

    Google Scholar 

  • Chagné D, Carlisle CM, Blond C, Volz RK, Whitworth CJ, Oraguzie NC, Crowhurst RN, Allan AC, Espley RV, Hellens RP, Gardiner SE (2007) Mapping a candidate gene (MdMYB10) for red flesh and foliage colour in apple. BMC Genomics 8:212. doi:10.1186/1471-2164-8-212

    Article  PubMed  Google Scholar 

  • Chen C, Zhou P, Choi YA, Huang S, Gmitter FG Jr (2006) Mining and characterizing microsatellites from Citrus ESTs. Theor Appl Genet 112:1248–1257

    Article  CAS  PubMed  Google Scholar 

  • DeCandolle AP (1825) Prodromus Systematis Naturalis Regni Vegetabilis. Paris:Sumptibus Sociorum Treuttel et Würtz. Rece de Pourbon No.17. Venitque in Eotumdem Bibliopolüs Argentorati et Londini 2:633–636

  • Decroocq V, Fave MG, Hagen L, Bordenave L, Decroocq S (2003) Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor Appl Genet 106:912–922

    CAS  PubMed  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Dirlewanger E, Cosson P, Tavaud M, Aranzana J, Poizat C, Zanetto A, Arus P, Laigret F (2002) Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor Appl Genet 105:127–138

    Article  CAS  PubMed  Google Scholar 

  • Ellegren H, Moore S, Robinson N, Byrne K, Ward W, Sheldon BC (1997) Microsatellites evolution—a reciprocal study of repeat lengths at homologous loci in cattle and sheep. Mol Biol Evol 14:854–860

    CAS  PubMed  Google Scholar 

  • Gonzalez-Martinez SC, Robledo-Arnuncio JJ, Collada C, Diaz A, Williams CG, Alia R, Cervera MT (2004) Cross-amplification and sequence variation of microsatellite loci in Eurasian hard pines. Theor Appl Genet 109:103–111

    Article  CAS  PubMed  Google Scholar 

  • Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N, Balyan HS (2003) Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Genet Genomics 270:315–323

    Article  CAS  PubMed  Google Scholar 

  • Hackauf B, Wehling P (2002) Identification of microsatellite polymorphisms in an expressed portion of the rye genome. Plant Breed 121:17–25

    Article  CAS  Google Scholar 

  • Huckins CA (1972) A revision of the sections of the genus Malus Miller. Ph.D. Thesis, Cornell University, Ithaca, NY

  • Jang JT, Tanabe K, Tamura F, Banno K (1992) Identification of Pyrus species by leaf peroxidase isozyme phenotypes (in Japanese with English summary). J Jpn Soc Hortic Sci 61:273–286

    Article  Google Scholar 

  • Jia XP, Shi YS, Song YC, Wang GY, Wang TY, Li Y (2007) Development of EST-SSR in foxtail millet (Setaria italica). Genet Resour Crop Evol 54:233–236

    Article  Google Scholar 

  • Jiang D, Zhong GY, Hong QB (2006) Analysis of microsatellites in Citrus Unigenes. Acta Genetica Sinica 33:345–353 (in Chinese)

    Article  CAS  PubMed  Google Scholar 

  • Kajiura I, Sato Y (1990) Recent progress in Japanese pear (Pyrus pyrifolia Nakai) breeding and descriptions of cultivars based on literature review (in Japanese with English summary). Bull Fruit Tree Res Stn Extra 1:1–329

    Google Scholar 

  • Kantety RV, Rota ML, Matthews DE, Sorrells ME (2002) Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol 48:501–510

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi A (1948) Horticulture of fruit trees, vol 1. Yokendo, Tokyo (in Japanese)

    Google Scholar 

  • Langenfeld WT (1991) Apple trees. Morphological evolution, phylogeny, geography and systematics. Riga (Zinatne) 232 (in Russian)

  • Lewin B (1994) Genes V. Oxford University Press, New York

    Google Scholar 

  • Li Y (1996) A critical review of the species and the classification of the genus Malus Mill. in the world. Journal of Fruit Science, Vol 10 (Suppl) Zhengzhou Fruit Research Institute, pp 63–81 (in Chinese)

  • Li Y (1999) An investigation and studies on the origin and evolution of Malus domestica Borkh. in the world. Acta Hortic Sinica 26:213–220

    Google Scholar 

  • Li Y (2001) Researches of germplasm resources of Malus Mill. Agriculture Press, Beijing (in Chinese)

    Google Scholar 

  • Linnaeus C (1753) Species plantarum. Bernard Quaritch, London

    Google Scholar 

  • Miyao A, Zhong HS, Monna L, Yano M, Yamamoto K, Havukkala I, Minobe Y, Sasaki T (1996) Characterization and genetic mapping of simple sequence repeats in the rice genome. DNA Res 3:233–238

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  CAS  PubMed  Google Scholar 

  • Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McArtney S, Nain B, Ross GS, Snowden KC, Souleyre EJF, Walton EF, Yauk YK (2006) Analysis of expressed sequence tags from apple. Plant Physiol 141:147–166

    Article  PubMed  Google Scholar 

  • Pierantoni L, Cho KH, Shin IS, Chiodini R, Tartarini S, Dondini L, Kang SJ, Sansavini S (2004) Characterisation and transferability of apple SSRs to two European pear F1 populations. Theor Appl Genet 109:1519–1524

    Article  CAS  PubMed  Google Scholar 

  • Pillen K, Binder A, Kreuzkam B, Ramsay L, Waugh R, Förster J, Léon J (2000) Mapping new EMBL-derived barley microsatellites and their use in differentiating German barley cultivars. Theor Appl Genet 101:652–660

    Article  CAS  Google Scholar 

  • Poncet V, Hamon P, Minier J, Carasco C, Hamon S, Noirot M (2004) SSR cross-amplification and variation within coffee trees (Coffea spp.). Genome 47:1071–1081

    Article  CAS  PubMed  Google Scholar 

  • Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–222

    Google Scholar 

  • Pu F, Wang Y (1963) Pomology of China. Pears, vol 3. Shanghai Science and Technology Press, Shanghai (in Chinese)

    Google Scholar 

  • Pu F, Huang L, Sun B, Li S (1989) Pear cultivars. Agriculture Press, Beijing (in Chinese)

    Google Scholar 

  • Rallo P, Tenzer I, Gessler C, Baldoni L, Dorado G, Martin A (2003) Transferability of olive microsatellite loci across the genus Olea. Theor Appl Genet 107:940–946

    Article  CAS  PubMed  Google Scholar 

  • Rehder A (1940) Manual of cultivated trees and shrubs, 2nd edn. Macmillan, New York

    Google Scholar 

  • Robinson JP, Harris SA, Juniper BE (2001) Taxonomy of the genus Malus Mill. (Rosaceae) with emphasis on the cultivated apple, M. domestica Borkh. Plant Syst Evol 226:35–58

    Article  CAS  Google Scholar 

  • Roder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    CAS  PubMed  Google Scholar 

  • Rohlf FJ (1998) Numerical taxonomy and multivariate analysis system. Version 2.0. Exeter Software, Setauket

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Scott KD, Eggler P, Seaton G, Rossetto M, Ablett EM, Lee LS, Henry RJ (2000) Analysis of SSRs derived from grape ESTs. Theor Appl Genet 100:723–726

    Article  CAS  Google Scholar 

  • Silfverberg-Dilworth E, Matasci CL, Van DE, Weg WE, Kaauwen MPW, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel CE, Costa F, Yamamoto T, Koller B, Gessler C, Patocchi A (2006) Microsatellite markers spanning the apple (Malus × domestica Borkh.) genome. Tree Genet Genomes 2:202–224

    Article  Google Scholar 

  • Teng Y, Tanabe K (2004) Reconsideration on the origin of cultivated pears native to East Asia. Acta Hortic 634:175–182

    Google Scholar 

  • Teng Y, Tanabe K, Tamura F, Itai A (2001) Genetic relationships of pear cultivars in Xinjiang, China as measured by RAPD markers. J Hortic Sci Biotechnol 76:771–779

    CAS  Google Scholar 

  • Teng Y, Tanabe K, Tamura F, Itai A (2002) Genetic relationships of Pyrus species and cultivars native to East Asia revealed by randomly amplified polymorphic DNA markers. J Am Soc Hortic Sci 127:262–270

    CAS  Google Scholar 

  • Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422

    CAS  PubMed  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55

    Article  CAS  PubMed  Google Scholar 

  • Vendramin E, Dettori MT, Giovinazzi J, Micali S, Quarta R, Verde I (2007) A set of EST-SSRs isolated from peach fruit transcriptome and their transportability across Prunus species. Mol Ecol Notes 7:307–310

    Article  CAS  Google Scholar 

  • Watkins R (1981) The main species of Malus. In: Hora B (ed) The Oxford encyclopedia of trees of the world. Oxford University Press, Oxford, pp 188–192

    Google Scholar 

  • Way RD, Aldwinckle HS, Lamb RC, Rejman A, Sansavini S, Shen T, Watkins R, Westwood MN, Yoshida Y (1991) Apples (Malus). In: Moore JN, Ballington JR (eds) Genetic resources of temperate fruit and nut crops 1. International Society of Horticultural Science, Wageningen, pp 3–62

    Google Scholar 

  • Yamamoto T, Kimura T, Sawamura Y, Kotobuki K, Ban Y, Hayashi T, Matsuta N (2001) SSRs isolated from apple can identify polymorphism and genetic diversity in pear. Theor Appl Genet 102:865–870

    Article  CAS  Google Scholar 

  • Yamamoto T, Kimura T, Terakami S, Nishitani C, Sawamura Y, Saito T, Kotabuki K, Hayashi T (2007) Integrated reference genetic linkage maps of pear based on SSR and AFLP markers. Breed Sci 57:321–329

    Article  CAS  Google Scholar 

  • Yang RC, Yeh FC (1993) Multilocus structure in Pinus contorta Dougl. Theor Appl Genet 87:568–576

    Article  Google Scholar 

  • Yu T (1979) Taxonomy of the fruit tree in China. Agriculture Press, Beijing (in Chinese)

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Prof. David Spooner of Department of Horticulture, University of Wisconsin, for critical review of the manuscript. This research work was funded by the project (30871690) of the National Natural Science Foundation of China, project (R307605) from Natural Science Foundation of Zhejiang Province, China, the grant (2008C32011) from Science & Technology Department of Zhejiang Province and the earmarked fund for Modern Agro-industry Technology Research System of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanwen Teng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 82 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, L., Zheng, X., Cai, D. et al. Exploitation of Malus EST-SSRs and the utility in evaluation of genetic diversity in Malus and Pyrus . Genet Resour Crop Evol 57, 841–851 (2010). https://doi.org/10.1007/s10722-009-9524-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-009-9524-1

Keywords

Navigation