Skip to main content

Advertisement

Log in

Blood group antigen expression is involved in C. albicans interaction with buccal epithelial cells

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Human blood group polymorphisms are known to be determined by the expression of A, B or H antigens and the Lewis antigens. Protection against microbial infections has been associated with inheritance of polymorphisms in genes encoding and regulating the expression of ABH and Lewis antigens in bodily secretions and epithelial tissue surfaces, subsequently resulting in the presentation of different glycosylated terminal antigens on the cell surface. We investigated the role of blood group antigens in diversifying the glycosylation of buccal epithelial cells (BEC) that line the oral cavity. Specifically, we characterized and statistically evaluated the expression of histo-blood group (A, B, O) antigens on N-and O-linked glycans from BEC membrane proteins of various individuals that represented different blood group type and secretor status using a porous graphitic carbon liquid chromatography electrospray ionization mass spectrometry (PGC-LC-ESI-MS) based glycomics approach. From these BEC membrane proteins a total of 77 N-glycan and 96 O-glycan structures were structurally characterized from 19 individuals and relatively quantitated. The N-glycans from the secretor individuals did not express any A/B blood group determinants, but contained several terminal H-antigens. Apart from the non-secretors, the N-glycan profiles of BEC from all blood groups displayed similar glycan types, while varying in their relative intensities between individuals. However, multivariate analysis of the O-glycans from individuals displayed segregation patterns clearly associated with their blood group type and secretor status. In adhesion assays the oral pathogen Candida albicans showed a significantly higher interaction to blood group O type BECs relative to other blood groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Anstee D.J.: The relationship between blood groups and disease. Blood. 115(23), 4635–4643 (2010). doi:10.1182/blood-2010-01-261859

    Article  CAS  PubMed  Google Scholar 

  2. Ravn V., Dabelsteen E.: Tissue distribution of histo-blood group antigens. APMIS. 108(1), 1–28 (2000)

    Article  CAS  PubMed  Google Scholar 

  3. Yamamoto F.: Review: ABO blood group system--ABH oligosaccharide antigens, anti-A and anti-B, A and B glycosyltransferases, and ABO genes. Immunohematology. 20(1), 3–22 (2004)

    CAS  PubMed  Google Scholar 

  4. Oriol R., Le Pendu J., Mollicone R.: Genetics of ABO, H. Lewis, X and related antigens. Vox Sang. 51(3), 161–171 (1986)

    CAS  PubMed  Google Scholar 

  5. Yamamoto F., Clausen H., White T., Marken J., Hakomori S.: Molecular genetic basis of the histo-blood group ABO system. Nature. 345(6272), 229–233 (1990). doi:10.1038/345229a0

    Article  CAS  PubMed  Google Scholar 

  6. Oriol R., Danilovs J., Hawkins B.R.: A new genetic model proposing that the Se gene is a structural gene closely linked to the H gene. Am. J. Hum. Genet. 33(3), 421–431 (1981)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Oriol R., Le Pendu J., Mollicone R.: Genetics of ABO, H. Lewis, X and related antigens. Vox Sang. 51(3), 161–171 (1986)

    CAS  PubMed  Google Scholar 

  8. Yamamoto F., Hakomori S.: Sugar-nucleotide donor specificity of histo-blood group A and B transferases is based on amino acid substitutions. J. Biol. Chem. 265(31), 19257–19262 (1990)

    CAS  PubMed  Google Scholar 

  9. Kermarrec N., Roubinet F., Apoil P.A., Blancher A.: Comparison of allele O sequences of the human and non-human primate ABO system. Immunogenetics. 49(6), 517–526 (1999)

    Article  CAS  PubMed  Google Scholar 

  10. Yunis E.J., Svardal J.M., Bridges R.A.: Genetics of the Bombay phenotype. Blood. 33(1), 124–132 (1969)

    CAS  PubMed  Google Scholar 

  11. Marionneau S., Cailleau-Thomas A., Rocher J., Le Moullac-Vaidye B., Ruvoen N., Clement M., Le Pendu J.: ABH and Lewis histo-blood group antigens, a model for the meaning of oligosaccharide diversity in the face of a changing world. Biochimie. 83(7), 565–573 (2001)

    Article  CAS  PubMed  Google Scholar 

  12. Blumenfeld O.O., Patnaik S.K.: Allelic genes of blood group antigens: a source of human mutations and cSNPs documented in the Blood Group Antigen Gene Mutation Database. Hum. Mutat. 23(1), 8–16 (2004). doi:10.1002/humu.10296

    Article  CAS  PubMed  Google Scholar 

  13. Storry J.R., Olsson M.L.: The ABO blood group system revisited: a review and update. Immunohematology. 25(2), 48–59 (2009)

    CAS  PubMed  Google Scholar 

  14. Greenwell P.: Blood group antigens: molecules seeking a function? Glycoconj. J. 14(2), 159–173 (1997)

    Article  CAS  PubMed  Google Scholar 

  15. Soejima M., Koda Y.: Molecular mechanisms of Lewis antigen expression. Leg Med (Tokyo). 7(4), 266–269 (2005). doi:10.1016/j.legalmed.2004.12.003

    Article  CAS  Google Scholar 

  16. Henry S.M., Oriol R., Samuelsson B.E.: Expression of Lewis histo-blood group glycolipids in the plasma of individuals of Le(a + b+) and partial secretor phenotypes. Glycoconj. J. 11(6), 593–599 (1994)

    Article  CAS  PubMed  Google Scholar 

  17. Seymour R.M., Allan M.J., Pomiankowski A., Gustafsson K.: Evolution of the human ABO polymorphism by two complementary selective pressures. Proc. Biol. Sci. 271(1543), 1065–1072 (2004). doi:10.1098/rspb.2004.2674

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gagneux P., Varki A.: Evolutionary considerations in relating oligosaccharide diversity to biological function. Glycobiology. 9(8), 747–755 (1999)

    Article  CAS  PubMed  Google Scholar 

  19. Ilver D., Arnqvist A., Ogren J., Frick I.M., Kersulyte D., Incecik E.T., Berg D.E., Covacci A., Engstrand L., Boren T.: Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science. 279(5349), 373–377 (1998)

    Article  CAS  PubMed  Google Scholar 

  20. Kanbay M., Gur G., Arslan H., Yilmaz U., Boyacioglu S.: The relationship of ABO blood group, age, gender, smoking, and Helicobacter pylori infection. Dig. Dis. Sci. 50(7), 1214–1217 (2005)

    Article  PubMed  Google Scholar 

  21. Boren T., Falk P., Roth K.A., Larson G., Normark S.: Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science. 262(5141), 1892–1895 (1993)

    Article  CAS  PubMed  Google Scholar 

  22. Aspholm M., Kalia A., Ruhl S., Schedin S., Arnqvist A., Linden S., Sjostrom R., Gerhard M., Semino-Mora C., Dubois A., Unemo M., Danielsson D., Teneberg S., Lee W.K., Berg D.E., Boren T.: Helicobacter pylori adhesion to carbohydrates. Methods Enzymol. 417, 293–339 (2006). doi:10.1016/S0076-6879(06)17020-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Linden S., Nordman H., Hedenbro J., Hurtig M., Boren T., Carlstedt I.: Strain- and blood group-dependent binding of Helicobacter pylori to human gastric MUC5AC glycoforms. Gastroenterology. 123(6), 1923–1930 (2002). doi:10.1053/gast.2002.37076

    Article  CAS  PubMed  Google Scholar 

  24. Marionneau S., Airaud F., Bovin N.V., Le Pendu J., Ruvoen-Clouet N.: Influence of the combined ABO, FUT2, and FUT3 polymorphism on susceptibility to Norwalk virus attachment. J Infect Dis. 192(6), 1071–1077 (2005). doi:10.1086/432546

    Article  CAS  PubMed  Google Scholar 

  25. Huang P., Farkas T., Marionneau S., Zhong W., Ruvoen-Clouet N., Morrow A.L., Altaye M., Pickering L.K., Newburg D.S., LePendu J., Jiang X.: Noroviruses bind to human ABO, Lewis, and secretor histo-blood group antigens: identification of 4 distinct strain-specific patterns. J Infect Dis. 188(1), 19–31 (2003). doi:10.1086/375742

    Article  CAS  PubMed  Google Scholar 

  26. Huang P., Farkas T., Zhong W., Tan M., Thornton S., Morrow A.L., Jiang X.: Norovirus and histo-blood group antigens: demonstration of a wide spectrum of strain specificities and classification of two major binding groups among multiple binding patterns. J. Virol. 79(11), 6714–6722 (2005). doi:10.1128/JVI.79.11.6714-6722.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nilsson J., Rydell G.E., Le Pendu J., Larson G.: Norwalk virus-like particles bind specifically to A, H and difucosylated Lewis but not to B histo-blood group active glycosphingolipids. Glycoconjugate Journal. 26(9), 1171–1180 (2009). doi:10.1007/s10719-009-9237-x

    Article  CAS  PubMed  Google Scholar 

  28. Hutson A.M., Atmar R.L., Graham D.Y., Estes M.K.: Norwalk virus infection and disease is associated with ABO histo-blood group type. J Infect Dis. 185(9), 1335–1337 (2002). doi:10.1086/339883

    Article  PubMed  Google Scholar 

  29. Shirato H., Ogawa S., Ito H., Sato T., Kameyama A., Narimatsu H., Xiaofan Z., Miyamura T., Wakita T., Ishii K., Takeda N.: Noroviruses distinguish between type 1 and type 2 histo-blood group antigens for binding. J. Virol. 82(21), 10756–10767 (2008). doi:10.1128/JVI.00802-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Blackwell C.C., Jonsdottir K., Hanson M.F., Weir D.M.: Non-secretion of ABO blood group antigens predisposing to infection by Haemophilus influenzae. Lancet. 2(8508), 687 (1986)

    Article  CAS  PubMed  Google Scholar 

  31. Blackwell C.C., Jonsdottir K., Hanson M., Todd W.T., Chaudhuri A.K., Mathew B., Brettle R.P., Weir D.M.: Non-secretion of ABO antigens predisposing to infection by Neisseria meningitidis and Streptococcus pneumoniae. Lancet. 2(8501), 284–285 (1986)

    Article  CAS  PubMed  Google Scholar 

  32. Sheinfeld J., Schaeffer A.J., Cordon-Cardo C., Rogatko A., Fair W.R.: Association of the Lewis blood-group phenotype with recurrent urinary tract infections in women. N. Engl. J. Med. 320(12), 773–777 (1989). doi:10.1056/NEJM198903233201205

    Article  CAS  PubMed  Google Scholar 

  33. Taylor-Cousar J.L., Zariwala M.A., Burch L.H., Pace R.G., Drumm M.L., Calloway H., Fan H., Weston B.W., Wright F.A., Knowles M.R.: Histo-blood group gene polymorphisms as potential genetic modifiers of infection and cystic fibrosis lung disease severity. PLoS One. 4(1), e4270 (2009). doi:10.1371/journal.pone.0004270

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cannon R.D., Chaffin W.L.: Oral colonization by Candida albicans. Crit. Rev. Oral Biol. Med. 10(3), 359–383 (1999)

    Article  CAS  PubMed  Google Scholar 

  35. Thom S.M., Blackwell C.C., MacCallum C.J., Weir D.M., Brettle R.P., Kinane D.F., Wray D.: Non-secretion of blood group antigens and susceptibility to infection by Candida species. FEMS Microbiol. Immunol. 1(6–7), 401–405 (1989)

    Article  CAS  PubMed  Google Scholar 

  36. Ben-Aryeh H., Blumfield E., Szargel R., Laufer D., Berdicevsky I.: Oral Candida carriage and blood group antigen secretor status. Mycoses. 38(9–10), 355–358 (1995)

    Article  CAS  PubMed  Google Scholar 

  37. Burford-Mason A.P., Weber J.C., Willoughby J.M.: Oral carriage of Candida albicans, ABO blood group and secretor status in healthy subjects. J Med Vet Mycol. 26(1), 49–56 (1988)

    Article  CAS  PubMed  Google Scholar 

  38. Shin E.S., Chung S.C., Kim Y.K., Lee S.W., Kho H.S.: The relationship between oral Candida carriage and the secretor status of blood group antigens in saliva. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 96(1), 48–53 (2003). doi:10.1067/moe.2003.S1079210403001604

    Article  PubMed  Google Scholar 

  39. Brassart D., Woltz A., Golliard M., Neeser J.R.: In vitro inhibition of adhesion of Candida albicans clinical isolates to human buccal epithelial cells by Fuc alpha 1----2Gal beta-bearing complex carbohydrates. Infect. Immun. 59(5), 1605–1613 (1991)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Johansson I., Bratt P., Hay D.I., Schluckebier S., Stromberg N.: Adhesion of Candida albicans, but not Candida krusei, to salivary statherin and mimicking host molecules. Oral Microbiol. Immunol. 15(2), 112–118 (2000)

    Article  CAS  PubMed  Google Scholar 

  41. Critchley I.A., Douglas L.J.: Role of glycosides as epithelial cell receptors for Candida albicans. J. Gen. Microbiol. 133(3), 637–643 (1987)

    CAS  PubMed  Google Scholar 

  42. Yu L., Lee K.K., Sheth H.B., Lane-Bell P., Srivastava G., Hindsgaul O., Paranchych W., Hodges R.S., Irvin R.T.: Fimbria-mediated adherence of Candida albicans to glycosphingolipid receptors on human buccal epithelial cells. Infect. Immun. 62(7), 2843–2848 (1994)

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Everest-Dass A.V., Jin D., Thaysen-Andersen M., Nevalainen H., Kolarich D., Packer N.H.: Comparative structural analysis of the glycosylation of salivary and buccal cell proteins: innate protection against infection by Candida albicans. Glycobiology. 22(11), 1465–1479 (2012). doi:10.1093/glycob/cws112

    Article  CAS  PubMed  Google Scholar 

  44. Xie H., Onsongo G., Popko J., de Jong E.P., Cao J., Carlis J.V., Griffin R.J., Rhodus N.L., Griffin T.J.: Proteomics analysis of cells in whole saliva from oral cancer patients via value-added three-dimensional peptide fractionation and tandem mass spectrometry. Mol. Cell. Proteomics. 7(3), 486–498 (2008). doi:10.1074/mcp.M700146-MCP200

    Article  CAS  PubMed  Google Scholar 

  45. Osswald K., Mittas A., Glei M., Pool-Zobel B.L.: New revival of an old biomarker: characterisation of buccal cells and determination of genetic damage in the isolated fraction of viable leucocytes. Mutat. Res. 544(2–3), 321–329 (2003)

    Article  CAS  PubMed  Google Scholar 

  46. Lee A., Kolarich D., Haynes P.A., Jensen P.H., Baker M.S., Packer N.H.: Rat liver membrane glycoproteome: enrichment by phase partitioning and glycoprotein capture. J. Proteome Res. 8(2), 770–781 (2009). doi:10.1021/pr800910w

    Article  CAS  PubMed  Google Scholar 

  47. Wilson N.L., Schulz B.L., Karlsson N.G., Packer N.H.: Sequential analysis of N- and O-linked glycosylation of 2D-PAGE separated glycoproteins. J. Proteome Res. 1(6), 521–529 (2002)

    Article  CAS  PubMed  Google Scholar 

  48. Jensen P.H., Karlsson N.G., Kolarich D., Packer N.H.: Structural analysis of N- and O-glycans released from glycoproteins. Nat. Protoc. 7(7), 1299–1310 (2012). doi:10.1038/nprot.2012.063

    Article  CAS  PubMed  Google Scholar 

  49. Bronner-Fraser M.: Alterations in neural crest migration by a monoclonal antibody that affects cell adhesion. J. Cell Biol. 101(2), 610–617 (1985)

    Article  CAS  PubMed  Google Scholar 

  50. Hodgkin P.D., Lee J.H., Lyons A.B.: B cell differentiation and isotype switching is related to division cycle number. J. Exp. Med. 184(1), 277–281 (1996)

    Article  CAS  PubMed  Google Scholar 

  51. Daffertshofer A., Lamoth C.J., Meijer O.G., Beek P.J.: PCA in studying coordination and variability: a tutorial. Clin Biomech (Bristol, Avon). 19(4), 415–428 (2004). doi:10.1016/j.clinbiomech.2004.01.005

    Article  Google Scholar 

  52. Ringner M.: What is principal component analysis? Nat. Biotechnol. 26(3), 303–304 (2008). doi:10.1038/nbt0308-303

    Article  CAS  PubMed  Google Scholar 

  53. Fumagalli M., Cagliani R., Pozzoli U., Riva S., Comi G.P., Menozzi G., Bresolin N., Sironi M.: Widespread balancing selection and pathogen-driven selection at blood group antigen genes. Genome Res. 19(2), 199–212 (2009). doi:10.1101/gr.082768.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ferrer-Admetlla A., Sikora M., Laayouni H., Esteve A., Roubinet F., Blancher A., Calafell F., Bertranpetit J., Casals F.: A natural history of FUT2 polymorphism in humans. Mol. Biol. Evol. 26(9), 1993–2003 (2009). doi:10.1093/molbev/msp108

    Article  CAS  PubMed  Google Scholar 

  55. Cameron B.J., Douglas L.J.: Blood group glycolipids as epithelial cell receptors for Candida albicans. Infect. Immun. 64(3), 891–896 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Chaffin W.L.: Candida albicans cell wall proteins. Microbiol. Mol. Biol. Rev. 72(3), 495–544 (2008). doi:10.1128/MMBR.00032-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Donohue D.S., Ielasi F.S., Goossens K.V., Willaert R.G.: The N-terminal part of Als1 protein from Candida albicans specifically binds fucose-containing glycans. Mol. Microbiol. 80(6), 1667–1679 (2011). doi:10.1111/j.1365-2958.2011.07676.x

    Article  CAS  PubMed  Google Scholar 

  58. Zhu W., Filler S.G.: Interactions of Candida albicans with epithelial cells. Cell. Microbiol. 12(3), 273–282 (2010). doi:10.1111/j.1462-5822.2009.01412.x

    Article  CAS  PubMed  Google Scholar 

  59. Hoyer L.L., Green C.B., Oh S.H., Zhao X.: Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family--a sticky pursuit. Medical mycology: official publication of the International Society for Human and Animal Mycology. 46(1), 1–15 (2008). doi:10.1080/13693780701435317

    Article  CAS  Google Scholar 

  60. Murciano C., Moyes D.L., Runglall M., Tobouti P., Islam A., Hoyer L.L., Naglik J.R.: Evaluation of the role of Candida albicans agglutinin-like sequence (Als) proteins in human oral epithelial cell interactions. PLoS One. 7(3), e33362 (2012). doi:10.1371/journal.pone.0033362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

NHP and AVE-D acknowledges the financial support of the ARC CoE in Nanoscale Biophotonics (ARC CE140100003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolle H. Packer.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

The saliva samples collected for this study were obtained ethically as approved by the University.

Electronic supplementary material

ESM 1 Figure S1

Representative CID-MS/MS fragment spectra derived from the singly charged negative ion O-linked glycans at m/z 10241− eluting at 27 min (A) and 31 min (B) respectively. The fragmentation of the structures was found to be consistent across different samples. Fragments are labelled according to the Domon and Costello (1988) scheme [1]. The identified structures with their key fragments are shown. (GIF 118 kb)

High-resolution image (TIFF 2782 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Everest-Dass, A.V., Kolarich, D., Pascovici, D. et al. Blood group antigen expression is involved in C. albicans interaction with buccal epithelial cells. Glycoconj J 34, 31–50 (2017). https://doi.org/10.1007/s10719-016-9726-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-016-9726-7

Keywords

Navigation