Skip to main content

Advertisement

Log in

Glycation vs. glycosylation: a tale of two different chemistries and biology in Alzheimer’s disease

  • Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

In our previous studies, we reported that the activity of an anti-oxidant enzyme, Cu,Zn-superoxide dismutase (Cu,Zn-SOD) became decreased as the result of glycation in vitro and in vivo. Glycated Cu,Zn-SOD produces hydroxyl radicals in the presence of transition metals due to the formation of a Schiff base adduct and a subsequent Amadori product. This results in the site-specific cleavage of the molecule, followed by random fragmentation. The glycation of other anti-oxidant enzymes such as glutathione peroxidase and thioredoxin reductase results in a loss or decrease in enzyme activity under pathological conditions, resulting in oxidative stress. The inactivation of anti-oxidant enzymes induces oxidative stress in aging, diabetes and neurodegenerative disorders. It is well known that the levels of Amadori products and Ne-(carboxylmethyl)lysine (CML) and other carbonyl compounds are increased in diabetes, a situation that will be discussed by the other authors in this special issue. We and others, reported that the glycation products accumulate in the brains of patients with Alzheimer’s disease (AD) patients as well as in cerebrospinal fluid (CSF), suggesting that glycation plays a pivotal role in the development of AD. We also showed that enzymatic glycosylation is implicated in the pathogenesis of AD and that oxidative stress is also important in this process. Specific types of glycosylation reactions were found to be up- or downregulated in AD patients, and key AD-related molecules including the amyloid-precursor protein (APP), tau, and APP-cleaving enzymes were shown to be functionally modified as the result of glycosylation. These results suggest that glycation as well as glycosylation are involved in oxidative stress that is associated with aging, diabetes and neurodegenerative diseases such as AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Taniguchi N., Honke K., Fukuda M., Narimatsu H., Yamaguchi Y., Angata T. (eds.): Handbook of glycosyltransferases and related genes, 2 ed. Springer Japan (2014)

  2. Taniguchi N., Kizuka Y., Takamatsu S., Miyoshi E., Gao C., Suzuki K., Kitazume S., Ohtsubo K.: Glyco-redox, a link between oxidative stress and changes of glycans: Lessons from research on glutathione, reactive oxygen and nitrogen species to glycobiology. Arch. Biochem. Biophys. 595, 72–80 (2016). doi:10.1016/j.abb.2015.11.024

    Article  CAS  PubMed  Google Scholar 

  3. Miyata T., Inagi R., Wada Y., Ueda Y., Iida Y., Takahashi M., Taniguchi N., Maeda K.: Glycation of human beta 2-microglobulin in patients with hemodialysis-associated amyloidosis: identification of the glycated sites. Biochemistry. 33(40), 12215–12221 (1994)

    Article  CAS  PubMed  Google Scholar 

  4. Dunn J.A., McCance D.R., Thorpe S.R., Lyons T.J., Baynes J.W.: Age-dependent accumulation of N epsilon-(carboxymethyl)lysine and N epsilon-(carboxymethyl)hydroxylysine in human skin collagen. Biochemistry. 30(5), 1205–1210 (1991)

    Article  CAS  PubMed  Google Scholar 

  5. Garlick R.L., Mazer J.S., Chylack Jr. L.T., Tung W.H., Bunn H.F.: Nonenzymatic glycation of human lens crystallin. Effect of aging and diabetes mellitus. The Journal of clinical investigation. 74(5), 1742–1749 (1984). doi:10.1172/jci111592

    CAS  PubMed  Google Scholar 

  6. Yatscoff R.W., Tevaarwerk G.J., MacDonald J.C.: Quantification of nonenzymically glycated albumin and total serum protein by affinity chromatography. Clin. Chem. 30(3), 446–449 (1984)

    CAS  PubMed  Google Scholar 

  7. Watkins N.G., Thorpe S.R., Baynes J.W.: Glycation of amino groups in protein. Studies on the specificity of modification of RNase by glucose. The Journal of biological chemistry. 260(19), 10629–10636 (1985)

    CAS  PubMed  Google Scholar 

  8. Miyata T., Oda O., Inagi R., Iida Y., Araki N., Yamada N., Horiuchi S., Taniguchi N., Maeda K., Kinoshita T.: beta 2-Microglobulin modified with advanced glycation end products is a major component of hemodialysis-associated amyloidosis. J. Clin. Invest. 92(3), 1243–1252 (1993). doi:10.1172/jci116696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Castellani R., Smith M.A., Richey P.L., Perry G.: Glycoxidation and oxidative stress in Parkinson disease and diffuse Lewy body disease. Brain Res. 737(1–2), 195–200 (1996)

    Article  CAS  PubMed  Google Scholar 

  10. Castellani R.J., Harris P.L.R., Sayre L.M., Fujii J., Taniguchi N., Vitek M.P., Founds H., Atwood C.S., Perry G., Smith M.A.: Active glycation in neurofibrillary pathology of Alzheimer disease: Nε-(Carboxymethyl) lysine and hexitol-lysine. Free Radic. Biol. Med. 31(2), 175–180 (2001). doi:10.1016/S0891-5849(01)00570-6

    Article  CAS  PubMed  Google Scholar 

  11. Shuvaev V.V., Laffont I., Serot J.M., Fujii J., Taniguchi N., Siest G.: Increased protein glycation in cerebrospinal fluid of Alzheimer’s disease. Neurobiol. Aging. 22(3), 397–402 (2001)

    Article  CAS  PubMed  Google Scholar 

  12. Takeuchi M., Kikuchi S., Sasaki N., Suzuki T., Watai T., Iwaki M., Bucala R., Yamagishi S.: Involvement of advanced glycation end-products (AGEs) in Alzheimer’s disease. Current Alzheimer research. 1(1), 39–46 (2004)

    Article  CAS  PubMed  Google Scholar 

  13. Guerrero E., Vasudevaraju P., Hegde M.L., Britton G.B., Rao K.S.: Recent advances in alpha-synuclein functions, advanced glycation, and toxicity: implications for Parkinson’s disease. Mol. Neurobiol. 47(2), 525–536 (2013). doi:10.1007/s12035-012-8328-z

    Article  CAS  PubMed  Google Scholar 

  14. Li J.J., Dickson D., Hof P.R., Vlassara H.: Receptors for advanced glycosylation endproducts in human brain: role in brain homeostasis. Mol. Med. (Cambridge, Mass.). 4(1), 46–60 (1998)

    CAS  Google Scholar 

  15. Vicente Miranda H., Outeiro T.F.: The sour side of neurodegenerative disorders: the effects of protein glycation. J. Pathol. 221(1), 13–25 (2010). doi:10.1002/path.2682

    Article  PubMed  CAS  Google Scholar 

  16. Padmaraju V., Bhaskar J.J., Prasada Rao U.J., Salimath P.V., Rao K.S.: Role of advanced glycation on aggregation and DNA binding properties of alpha-synuclein. Journal of Alzheimer’s disease: JAD. 24(Suppl 2), 211–221 (2011). doi:10.3233/jad-2011-101965

    CAS  PubMed  Google Scholar 

  17. Chou S.M., Wang H.S., Taniguchi A., Bucala R.: Advanced glycation endproducts in neurofilament conglomeration of motoneurons in familial and sporadic amyotrophic lateral sclerosis. Mol. Med. (Cambridge, Mass.). 4(5), 324–332 (1998)

    CAS  PubMed Central  Google Scholar 

  18. Shibata N., Hirano A., Hedley-Whyte E.T., Dal Canto M.C., Nagai R., Uchida K., Horiuchi S., Kawaguchi M., Yamamoto T., Kobayashi M.: Selective formation of certain advanced glycation end products in spinal cord astrocytes of humans and mice with superoxide dismutase-1 mutation. Acta Neuropathol. 104(2), 171–178 (2002). doi:10.1007/s00401-002-0537-5

    Article  CAS  PubMed  Google Scholar 

  19. Kikuchi S., Ogata A., Shinpo K., Moriwaka F., Fujii J., Taniguchi N., Tashiro K.: Detection of an Amadori product, 1-hexitol-lysine, in the anterior horn of the amyotrophic lateral sclerosis and spinobulbar muscular atrophy spinal cord: evidence for early involvement of glycation in motoneuron diseases. Acta Neuropathol. 99(1), 63–66 (2000)

    Article  CAS  PubMed  Google Scholar 

  20. Taniguchi N.: From the gamma-glutamyl cycle to the glycan cycle: a road with many turns and pleasant surprises. J. Biol. Chem. 284(50), 34469–34478 (2009). doi:10.1074/jbc.X109.023150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ookawara T., Kawamura N., Kitagawa Y., Taniguchi N.: Site-specific and random fragmentation of Cu. Zn-superoxide dismutase by glycation reaction. Implication of reactive oxygen species. The Journal of biological chemistry. 267(26), 18505–18510 (1992)

    CAS  PubMed  Google Scholar 

  22. Nagai R., Ikeda K., Higashi T., Sano H., Jinnouchi Y., Araki T., Horiuchi S.: Hydroxyl radical mediates N epsilon-(carboxymethyl)lysine formation from Amadori product. Biochem. Biophys. Res. Commun. 234(1), 167–172 (1997)

    Article  CAS  PubMed  Google Scholar 

  23. Sakurai T., Sugioka K., Nakano M.: O2- generation and lipid peroxidation during the oxidation of a glycated polypeptide, glycated polylysine, in the presence of iron-ADP. Biochim. Biophys. Acta. 1043(1), 27–33 (1990)

    Article  CAS  PubMed  Google Scholar 

  24. Azevedo M., Falcao J., Raposo J., Manso C.: Superoxide radical generation by Amadori compounds. Free Radic. Res. Commun. 4(5), 331–335 (1988)

    Article  CAS  PubMed  Google Scholar 

  25. Mossine V.V., Linetsky M., Glinsky G.V., Ortwerth B.J., Feather M.S.: Superoxide free radical generation by Amadori compounds: the role of acyclic forms and metal ions. Chem. Res. Toxicol. 12(3), 230–236 (1999). doi:10.1021/tx980209e

    Article  CAS  PubMed  Google Scholar 

  26. Mullarkey C.J., Edelstein D., Brownlee M.: Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochem. Biophys. Res. Commun. 173(3), 932–939 (1990)

    Article  CAS  PubMed  Google Scholar 

  27. Wolff S.P., Dean R.T.: Glucose autoxidation and protein modification. The potential role of ‘autoxidative glycosylation’ in diabetes. The Biochemical journal. 245(1), 243–250 (1987)

    CAS  PubMed  Google Scholar 

  28. Hayashi T., Namiki M.: Role of sugar fragmentation in an early stage Browning of amino-carbonyl reaction of sugar with amino acid. Agric. Biol. Chem. 50(8), 1965–1970 (1986). doi:10.1271/bbb1961.50.1965

    CAS  Google Scholar 

  29. Hodge J.E.: Dehydrated foods. Chemistry of Browning Reactions in Model Systems. Journal of Agricultural and Food Chemistry. 1(15), 928–943 (1953). doi:10.1021/jf60015a004

    Article  CAS  Google Scholar 

  30. Kawakishi S., Tsunehiro J., Uchida K.: Autoxidative degradation of Amadori compounds in the presence of copper ion. Carbohydr. Res. 211(1), 167–171 (1991). doi:10.1016/0008-6215(91)84156-9

    Article  CAS  Google Scholar 

  31. Sakurai T., Tsuchiya S.: Superoxide production from nonenzymatically glycated protein. FEBS Lett. 236(2), 406–410 (1988)

    Article  CAS  PubMed  Google Scholar 

  32. Ahmed M.U., Thorpe S.R., Baynes J.W.: Identification of N epsilon-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. J. Biol. Chem. 261(11), 4889–4894 (1986)

    CAS  PubMed  Google Scholar 

  33. Szwergold B.S., Kappler F., Brown T.R.: Identification of fructose 3-phosphate in the lens of diabetic rats. Sci. (New York). 247(4941), 451–454 (1990)

    Article  CAS  Google Scholar 

  34. Suravajjala S., Cohenford M., Frost L.R., Pampati P.K., Dain J.A.: Glycation of human erythrocyte glutathione peroxidase: effect on the physical and kinetic properties. Clin. Chim. Acta; Int. J. Clin. Chem. 421, 170–176 (2013). doi:10.1016/j.cca.2013.02.032

    Article  CAS  Google Scholar 

  35. Niwa T., Tsukushi S.: 3-deoxyglucosone and AGEs in uremic complications: inactivation of glutathione peroxidase by 3-deoxyglucosone. Kidney Int. Suppl. 78, S37–S41 (2001). doi:10.1046/j.1523-1755.2001.59780037.x

    Article  CAS  PubMed  Google Scholar 

  36. Asahi M., Fujii J., Suzuki K., Seo H.G., Kuzuya T., Hori M., Tada M., Fujii S., Taniguchi N.: Inactivation of glutathione peroxidase by nitric oxide. Implication for cytotoxicity. The Journal of biological chemistry. 270(36), 21035–21039 (1995)

    Article  CAS  PubMed  Google Scholar 

  37. Asahi M., Fujii J., Takao T., Kuzuya T., Hori M., Shimonishi Y., Taniguchi N.: The oxidation of selenocysteine is involved in the inactivation of glutathione peroxidase by nitric oxide donor. J. Biol. Chem. 272(31), 19152–19157 (1997)

    Article  CAS  PubMed  Google Scholar 

  38. Park Y.S., Misonou Y., Fujiwara N., Takahashi M., Miyamoto Y., Koh Y.H., Suzuki K., Taniguchi N.: Induction of thioredoxin reductase as an adaptive response to acrolein in human umbilical vein endothelial cells. Biochem. Biophys. Res. Commun. 327(4), 1058–1065 (2005). doi:10.1016/j.bbrc.2004.12.104

    Article  CAS  PubMed  Google Scholar 

  39. Arai K., Iizuka S., Makita A., Oikawa K., Taniguchi N.: Purification of Cu-Zn-superoxide dismutase from human erythrocytes by immunoaffinity chromatography. Evidence for the presence of isoelectric heterogeneity. Journal of immunological methods. 91(1), 139–143 (1986)

    Article  CAS  PubMed  Google Scholar 

  40. Arai K., Maguchi S., Fujii S., Ishibashi H., Oikawa K., Taniguchi N.: Glycation and inactivation of human Cu-Zn-superoxide dismutase. Identification of the in vitro glycated sites. J. Biol. Chem. 262(35), 16969–16972 (1987)

    CAS  PubMed  Google Scholar 

  41. Arai K., Iizuka S., Tada Y., Oikawa K., Taniguchi N.: Increase in the glucosylated form of erythrocyte Cu-Zn-superoxide dismutase in diabetes and close association of the nonenzymatic glucosylation with the enzyme activity. Biochim. Biophys. Acta. 924(2), 292–296 (1987)

    Article  CAS  PubMed  Google Scholar 

  42. Kawamura N., Ookawara T., Suzuki K., Konishi K., Mino M., Taniguchi N.: Increased glycated Cu. Zn-superoxide dismutase levels in erythrocytes of patients with insulin-dependent diabetis mellitus. The Journal of clinical endocrinology and metabolism. 74(6), 1352–1354 (1992). doi:10.1210/jcem.74.6.1592880

    CAS  PubMed  Google Scholar 

  43. Brownlee M., Vlassara H., Cerami A.: Nonenzymatic glycosylation and the pathogenesis of diabetic complications. Ann. Intern. Med. 101(4), 527–537 (1984)

    Article  CAS  PubMed  Google Scholar 

  44. Cerami A., Vlassara H., Brownlee M.: Protein glycosylation and the pathogenesis of atherosclerosis. Metabolism: clinical and experimental. 34(12 Suppl 1), 37–42 (1985)

    Article  CAS  Google Scholar 

  45. Vlassara H., Brownlee M., Cerami A.: Nonenzymatic glycosylation: role in the pathogenesis of diabetic complications. Clin. Chem. 32(10 Suppl), B37–B41 (1986)

    CAS  PubMed  Google Scholar 

  46. Monnier V.M., Cerami A.: Nonenzymatic browning in vivo: possible process for aging of long-lived proteins. Sci. (New York. 211(4481), 491–493 (1981)

    Article  CAS  Google Scholar 

  47. Eum W.S., Kang J.H.: Release of copper ions from the familial amyotrophic lateral sclerosis-associated Cu. Zn-superoxide dismutase mutants. Molecules and cells. 9(1), 110–114 (1999)

    CAS  PubMed  Google Scholar 

  48. Baynes J.W.: Role of oxidative stress in development of complications in diabetes. Diabetes. 40(4), 405–412 (1991)

    Article  CAS  PubMed  Google Scholar 

  49. Ahmad S., Khan M.S., Akhter F., Khan M.S., Khan A., Ashraf J.M., Pandey R.P., Shahab U.: Glycoxidation of biological macromolecules: a critical approach to halt the menace of glycation. Glycobiology. 24(11), 979–990 (2014). doi:10.1093/glycob/cwu057

    Article  CAS  PubMed  Google Scholar 

  50. Kaneto H., Fujii J., Suzuki K., Kasai H., Kawamori R., Kamada T., Taniguchi N.: DNA cleavage induced by glycation of Cu. Zn-superoxide dismutase. The Biochemical journal. 304(Pt 1), 219–225 (1994)

    CAS  PubMed  Google Scholar 

  51. Kaneto H., Fujii J., Myint T., Miyazawa N., Islam K.N., Kawasaki Y., Suzuki K., Nakamura M., Tatsumi H., Yamasaki Y., Taniguchi N.: Reducing sugars trigger oxidative modification and apoptosis in pancreatic beta-cells by provoking oxidative stress through the glycation reaction. The Biochemical journal. 320(Pt 3), 855–863 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rosen D.R., Siddique T., Patterson D., Figlewicz D.A., Sapp P., Hentati A., Donaldson D., Goto J., O’Regan J.P., Deng H.X., et al.: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 362(6415), 59–62 (1993). doi:10.1038/362059a0

    Article  CAS  PubMed  Google Scholar 

  53. Sreedharan J., Brown R.H.: Amyotrophic lateral sclerosis: problems and prospects. Ann. Neurol. 74(3), 309–316 (2013). doi:10.1002/ana.24012

    Article  CAS  PubMed  Google Scholar 

  54. Nakano R., Inuzuka T., Kikugawa K., Takahashi H., Sakimura K., Fujii J., Taniguchi N., Tsuji S.: Instability of mutant Cu/Zn superoxide dismutase (Ala4Thr) associated with familial amyotrophic lateral sclerosis. Neurosci. Lett. 211(2), 129–131 (1996)

    Article  CAS  PubMed  Google Scholar 

  55. Takamiya R., Takahashi M., Myint T., Park Y.S., Miyazawa N., Endo T., Fujiwara N., Sakiyama H., Misonou Y., Miyamoto Y., Fujii J., Taniguchi N.: Glycation proceeds faster in mutated Cu. Zn-superoxide dismutases related to familial amyotrophic lateral sclerosis. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 17(8), 938–940 (2003). doi:10.1096/fj.02-0768fje

    CAS  Google Scholar 

  56. Salahuddin P., Rabbani G., Khan R.H.: The role of advanced glycation end products in various types of neurodegenerative disease: a therapeutic approach. Cellular & molecular biology letters. 19(3), 407–437 (2014). doi:10.2478/s11658-014-0205-5

    Article  CAS  Google Scholar 

  57. Kikuchi S., Shinpo K., Ogata A., Tsuji S., Takeuchi M., Makita Z., Tashiro K.: Detection of N epsilon-(carboxymethyl)lysine (CML) and non-CML advanced glycation end-products in the anterior horn of amyotrophic lateral sclerosis spinal cord. Amyotrophic lateral sclerosis and other motor neuron disorders: official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases. 3(2), 63–68 (2002). doi:10.1080/146608202760196020

    Article  CAS  Google Scholar 

  58. Singh R.J., Karoui H., Gunther M.R., Beckman J.S., Mason R.P., Kalyanaraman B.: Reexamination of the mechanism of hydroxyl radical adducts formed from the reaction between familial amyotrophic lateral sclerosis-associated Cu,Zn superoxide dismutase mutants and H2O2. Proc. Natl. Acad. Sci. U. S. A. 95(12), 6675–6680 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Furuta A., Price D.L., Pardo C.A., Troncoso J.C., Xu Z.S., Taniguchi N., Martin L.J.: Localization of superoxide dismutases in Alzheimer’s disease and Down’s syndrome neocortex and hippocampus. Am. J. Pathol. 146(2), 357–367 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Myers C.R., Myers J.M., Kufahl T.D., Forbes R., Szadkowski A.: The effects of acrolein on the thioredoxin system: implications for redox-sensitive signaling. Mol. Nutr. Food Res. 55(9), 1361–1374 (2011). doi:10.1002/mnfr.201100224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shuvaev V.V., Fujii J., Kawasaki Y., Itoh H., Hamaoka R., Barbier A., Ziegler O., Siest G., Taniguchi N.: Glycation of apolipoprotein E impairs its binding to heparin: identification of the major glycation site. Biochim. Biophys. Acta. 1454(3), 296–308 (1999)

    Article  CAS  PubMed  Google Scholar 

  62. Smith M.A., Taneda S., Richey P.L., Miyata S., Yan S.D., Stern D., Sayre L.M., Monnier V.M., Perry G.: Advanced Maillard reaction end products are associated with Alzheimer disease pathology. Proc. Natl. Acad. Sci. U. S. A. 91(12), 5710–5714 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Luth H.J., Ogunlade V., Kuhla B., Kientsch-Engel R., Stahl P., Webster J., Arendt T., Munch G.: Age- and stage-dependent accumulation of advanced glycation end products in intracellular deposits in normal and Alzheimer’s disease brains. Cereb. Cortex (New York: 1991). 15(2), 211–220 (2005). doi:10.1093/cercor/bhh123

    Google Scholar 

  64. Munch G., Apelt J., Rosemarie Kientsch E., Stahl P., Luth H.J., Schliebs R.: Advanced glycation endproducts and pro-inflammatory cytokines in transgenic Tg2576 mice with amyloid plaque pathology. J. Neurochem. 86(2), 283–289 (2003)

    Article  PubMed  CAS  Google Scholar 

  65. Munch G., Kuhla B., Luth H.J., Arendt T., Robinson S.R.: Anti-AGEing defences against Alzheimer’s disease. Biochem. Soc. Trans. 31(Pt 6), 1397–1399 (2003)

    Article  CAS  PubMed  Google Scholar 

  66. Wong A., Luth H.J., Deuther-Conrad W., Dukic-Stefanovic S., Gasic-Milenkovic J., Arendt T., Munch G.: Advanced glycation endproducts co-localize with inducible nitric oxide synthase in Alzheimer’s disease. Brain Res. 920(1–2), 32–40 (2001)

    Article  CAS  PubMed  Google Scholar 

  67. Apweiler R., Hermjakob H., Sharon N.: On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta Gen. Subj. 1473(1), 4–8 (1999). doi:10.1016/S0304-4165(99)00165-8

    Article  CAS  Google Scholar 

  68. Varki A., Cummings R.D., Esko J.D., Freeze H.H., Stanley P., Bertozzi C.R., Hart G.W., Etzler M.E. (eds.): Essentials of Glycobiology, 2nd ed. Cold Spring Harbor, NY (2009)

    Google Scholar 

  69. Ohtsubo, K., Marth, J.D.: Glycosylation in cellular mechanisms of health and disease. Cell 126(5), 855–867. doi:10.1016/j.cell.2006.08.019

  70. Taniguchi N., Miyoshi E., Gu J., Honke K., Matsumoto A.: Decoding sugar functions by identifying target glycoproteins [Current Opinion in Structural Biology 2006, 16:561–566]. Curr. Opin. Struct. Biol. 16(6), 796 (2006). doi:10.1016/j.sbi.2006.10.009

    Article  CAS  Google Scholar 

  71. Taniguchi N., Endo T., Hart G.W., Seeberger P.H., Wong C. (eds.): Glycoscience: biology and medicine, 1 ed. Springer Japan (2015)

  72. Schedin-Weiss S., Winblad B., Tjernberg L.O.: The role of protein glycosylation in Alzheimer disease. The FEBS journal. 281(1), 46–62 (2014). doi:10.1111/febs.12590

    Article  CAS  PubMed  Google Scholar 

  73. De Strooper B., Karran E.: The cellular phase of Alzheimer’s disease. Cell. 164(4), 603–615 (2016). doi:10.1016/j.cell.2015.12.056

    Article  PubMed  CAS  Google Scholar 

  74. Maguire T.M., Gillian A.M., O’Mahony D., Coughlan C.M., Dennihan A., Breen K.C.: A decrease in serum sialyltransferase levels in Alzheimer’s disease. Neurobiol. Aging. 15(1), 99–102 (1994)

    Article  CAS  PubMed  Google Scholar 

  75. Fodero L.R., Saez-Valero J., Barquero M.S., Marcos A., McLean C.A., Small D.H.: Wheat germ agglutinin-binding glycoproteins are decreased in Alzheimer’s disease cerebrospinal fluid. J. Neurochem. 79(5), 1022–1026 (2001)

    Article  CAS  PubMed  Google Scholar 

  76. Nakagawa K., Kitazume S., Oka R., Maruyama K., Saido T.C., Sato Y., Endo T., Hashimoto Y.: Sialylation enhances the secretion of neurotoxic amyloid-beta peptides. J. Neurochem. 96(4), 924–933 (2006). doi:10.1111/j.1471-4159.2005.03595.x

    Article  CAS  PubMed  Google Scholar 

  77. McFarlane I., Breen K.C., Di Giamberardino L., Moya K.L.: Inhibition of N-glycan processing alters axonal transport of synaptic glycoproteins in vivo. Neuroreport. 11(7), 1543–1547 (2000)

    Article  CAS  PubMed  Google Scholar 

  78. McFarlane I., Georgopoulou N., Coughlan C.M., Gillian A.M., Breen K.C.: The role of the protein glycosylation state in the control of cellular transport of the amyloid beta precursor protein. Neuroscience. 90(1), 15–25 (1999)

    Article  CAS  PubMed  Google Scholar 

  79. Jacobsen K.T., Iverfeldt K.: O-GlcNAcylation increases non-amyloidogenic processing of the amyloid-beta precursor protein (APP). Biochem. Biophys. Res. Commun. 404(3), 882–886 (2011). doi:10.1016/j.bbrc.2010.12.080

    Article  CAS  PubMed  Google Scholar 

  80. Tienari P.J., De Strooper B., Ikonen E., Simons M., Weidemann A., Czech C., Hartmann T., Ida N., Multhaup G., Masters C.L., Van Leuven F., Beyreuther K., Dotti C.G.: The beta-amyloid domain is essential for axonal sorting of amyloid precursor protein. EMBO J. 15(19), 5218–5229 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Tomita S., Kirino Y., Suzuki T.: Cleavage of Alzheimer’s amyloid precursor protein (APP) by secretases occurs after O-glycosylation of APP in the protein secretory pathway. Identification of intracellular compartments in which APP cleavage occurs without using toxic agents that interfere with protein metabolism. The Journal of biological chemistry. 273(11), 6277–6284 (1998)

    CAS  PubMed  Google Scholar 

  82. Tootle T.L., Rebay I.: Post-translational modifications influence transcription factor activity: a view from the ETS superfamily. BioEssays: news and reviews in molecular, cellular and developmental biology. 27(3), 285–298 (2005). doi:10.1002/bies.20198

    Article  CAS  Google Scholar 

  83. Brinkmalm G., Portelius E., Ohrfelt A., Mattsson N., Persson R., Gustavsson M.K., Vite C.H., Gobom J., Mansson J.E., Nilsson J., Halim A., Larson G., Ruetschi U., Zetterberg H., Blennow K., Brinkmalm A.: An online nano-LC-ESI-FTICR-MS method for comprehensive characterization of endogenous fragments from amyloid beta and amyloid precursor protein in human and cat cerebrospinal fluid. Journal of mass spectrometry: JMS. 47(5), 591–603 (2012). doi:10.1002/jms.2987

    Article  CAS  PubMed  Google Scholar 

  84. Halim A., Brinkmalm G., Ruetschi U., Westman-Brinkmalm A., Portelius E., Zetterberg H., Blennow K., Larson G., Nilsson J.: Site-specific characterization of threonine, serine, and tyrosine glycosylations of amyloid precursor protein/amyloid beta-peptides in human cerebrospinal fluid. Proc. Natl. Acad. Sci. U. S. A. 108(29), 11848–11853 (2011). doi:10.1073/pnas.1102664108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Griffith L.S., Mathes M., Schmitz B.: Beta-amyloid precursor protein is modified with O-linked N-acetylglucosamine. J. Neurosci. Res. 41(2), 270–278 (1995). doi:10.1002/jnr.490410214

    Article  CAS  PubMed  Google Scholar 

  86. Kitazume S., Tachida Y., Kato M., Yamaguchi Y., Honda T., Hashimoto Y., Wada Y., Saito T., Iwata N., Saido T., Taniguchi N.: Brain endothelial cells produce amyloid {beta} from amyloid precursor protein 770 and preferentially secrete the O-glycosylated form. J. Biol. Chem. 285(51), 40097–40103 (2010). doi:10.1074/jbc.M110.144626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kitazume S., Tachida Y., Oka R., Shirotani K., Saido T.C., Hashimoto Y.: Alzheimer’s beta-secretase, beta-site amyloid precursor protein-cleaving enzyme, is responsible for cleavage secretion of a Golgi-resident sialyltransferase. Proc. Natl. Acad. Sci. U. S. A. 98(24), 13554–13559 (2001). doi:10.1073/pnas.241509198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kitazume S., Yoshihisa A., Yamaki T., Oikawa M., Tachida Y., Ogawa K., Imamaki R., Hagiwara Y., Kinoshita N., Takeishi Y., Furukawa K., Tomita N., Arai H., Iwata N., Saido T., Yamamoto N., Taniguchi N.: Soluble amyloid precursor protein 770 is released from inflamed endothelial cells and activated platelets: a novel biomarker for acute coronary syndrome. J. Biol. Chem. 287(48), 40817–40825 (2012). doi:10.1074/jbc.M112.398578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Arnold C.S., Johnson G.V., Cole R.N., Dong D.L., Lee M., Hart G.W.: The microtubule-associated protein tau is extensively modified with O-linked N-acetylglucosamine. J. Biol. Chem. 271(46), 28741–28744 (1996)

    Article  CAS  PubMed  Google Scholar 

  90. Nishikawa A., Ihara Y., Hatakeyama M., Kangawa K., Taniguchi N.: Purification, cDNA cloning, and expression of UDP-N-acetylglucosamine: beta-D-mannoside beta-1,4 N-acetylglucosaminyltransferase III from rat kidney. J. Biol. Chem. 267(25), 18199–18204 (1992)

    CAS  PubMed  Google Scholar 

  91. Ihara Y., Nishikawa A., Tohma T., Soejima H., Niikawa N., Taniguchi N.: cDNA cloning, expression, and chromosomal localization of human N-acetylglucosaminyltransferase III (GnT-III). J. Biochem. 113(6), 692–698 (1993)

    CAS  PubMed  Google Scholar 

  92. Akasaka-Manya K., Manya H., Sakurai Y., Wojczyk B.S., Kozutsumi Y., Saito Y., Taniguchi N., Murayama S., Spitalnik S.L., Endo T.: Protective effect of N-glycan bisecting GlcNAc residues on beta-amyloid production in Alzheimer’s disease. Glycobiology. 20(1), 99–106 (2010). doi:10.1093/glycob/cwp152

    Article  CAS  PubMed  Google Scholar 

  93. Akama R., Sato Y., Kariya Y., Isaji T., Fukuda T., Lu L., Taniguchi N., Ozawa M., Gu J.: N-acetylglucosaminyltransferase III expression is regulated by cell-cell adhesion via the E-cadherin-catenin-actin complex. Proteomics. 8(16), 3221–3228 (2008). doi:10.1002/pmic.200800038

    Article  CAS  PubMed  Google Scholar 

  94. Kizuka Y., Kitazume S., Fujinawa R., Saito T., Iwata N., Saido T.C., Nakano M., Yamaguchi Y., Hashimoto Y., Staufenbiel M., Hatsuta H., Murayama S., Manya H., Endo T., Taniguchi N.: An aberrant sugar modification of BACE1 blocks its lysosomal targeting in Alzheimer’s disease. EMBO Mol. Med. 7(2), 175–189 (2015). doi:10.15252/emmm.201404438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kao S.C., Krichevsky A.M., Kosik K.S., Tsai L.H.: BACE1 suppression by RNA interference in primary cortical neurons. J. Biol. Chem. 279(3), 1942–1949 (2004). doi:10.1074/jbc.M309219200

    Article  CAS  PubMed  Google Scholar 

  96. Kizuka Y., Kitazume S., Sato K., Taniguchi N.: Clec4g (LSECtin) interacts with BACE1 and suppresses Abeta generation. FEBS Lett. 589(13), 1418–1422 (2015). doi:10.1016/j.febslet.2015.04.060

    Article  CAS  PubMed  Google Scholar 

  97. Kizuka Y., Nakano M., Kitazume S., Saito T.: Saido, Takaomi C., Taniguchi, N.: bisecting GlcNAc modification stabilizes BACE1 protein under oxidative stress conditions. Biochem. J. 473(1), 21–30 (2016). doi:10.1042/bj20150607

    Article  CAS  PubMed  Google Scholar 

  98. Biessels G.J., Reagan L.P.: Hippocampal insulin resistance and cognitive dysfunction. Nat Rev Neurosci. 16(11), 660–671 (2015). doi:10.1038/nrn4019

    Article  CAS  PubMed  Google Scholar 

  99. Brownlee M.: Biochemistry and molecular cell biology of diabetic complications. Nature. 414(6865), 813–820 (2001)

    Article  CAS  PubMed  Google Scholar 

  100. Hardivillé S., Hart G.W.: Nutrient regulation of signaling, transcription, and cell physiology by O-glcnacylation. Cell Metab. 20(2), 208–213 (2014). doi:10.1016/j.cmet.2014.07.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Vaidyanathan K., Wells L.: Multiple tissue-specific roles for the O-GlcNAc post-translational modification in the induction of and complications arising from type II diabetes. J. Biol. Chem. 289(50), 34466–34471 (2014). doi:10.1074/jbc.R114.591560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Slawson C., Copeland R.J., Hart G.W.: O-GlcNAc signaling: a metabolic link between diabetes and cancer? Trends Biochem. Sci. 35(10), 547–555 (2010). doi:10.1016/j.tibs.2010.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yang, X., Ongusaha, P.P., Miles, P.D., Havstad, J.C., Zhang, F., So, W.V., Kudlow, J.E., Michell, R.H., Olefsky, J.M., Field, S.J., Evans, R.M.: Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature 451(7181), 964–969 (2008). http://www.nature.com/nature/journal/v451/n7181/suppinfo/nature06668_S1.html

    Article  CAS  PubMed  Google Scholar 

  104. Ngoh G.A., Facundo H.T., Zafir A., Jones S.P.: O-GlcNAc signaling in the cardiovascular system. Circ. Res. 107(2), 171–185 (2010). doi:10.1161/circresaha.110.224675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gunton J.E., Kulkarni R.N., Yim S., Okada T., Hawthorne W.J., Tseng Y.-H., Roberson R.S., Ricordi C., O’Connell P.J., Gonzalez F.J., Kahn C.R.: Loss of ARNT/HIF1β mediates altered gene expression and pancreatic-islet dysfunction in human type 2 diabetes. Cell. 122(3), 337–349 (2005). doi:10.1016/j.cell.2005.05.027

    Article  CAS  PubMed  Google Scholar 

  106. Ohtsubo K., Takamatsu S., Minowa M.T., Yoshida A., Takeuchi M., Marth J.D.: Dietary and genetic control of glucose transporter 2 glycosylation promotes insulin secretion in suppressing diabetes. Cell. 123(7), 1307–1321 (2005). doi:10.1016/j.cell.2005.09.041

    Article  CAS  PubMed  Google Scholar 

  107. Ohtsubo, K., Chen, M.Z., Olefsky, J.M., Marth, J.D.: Pathway to diabetes through attenuation of pancreatic beta cell glycosylation and glucose transport. Nat. Med. 17(9), 1067–1075 (2011). http://www.nature.com/nm/journal/v17/n9/abs/nm.2414.html#supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is partially supported by Grants in aid from the Ministry of Education, Culture, Sports, Science and Technology and from Japan Society for Promotion of Science. The authors thank Ms. Fumi Ota for her help with preparing and submitting this paper and Dr. Milton Feather for his help with the English editing.

This paper is dedicated to the late Professor Gérard Siest, University of Lorraine, Nancy, who passed away on April 9, 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoyuki Taniguchi.

Additional information

Naoyuki Taniguchi and Motoko Takahashi contributed equally to this review.

A part of this work was presented as a plenary lecture in the 12th International Symposium on the Maillard reaction symposium held in Tokyo in September 1–3, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taniguchi, N., Takahashi, M., Kizuka, Y. et al. Glycation vs. glycosylation: a tale of two different chemistries and biology in Alzheimer’s disease. Glycoconj J 33, 487–497 (2016). https://doi.org/10.1007/s10719-016-9690-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-016-9690-2

Keywords

Navigation