Skip to main content

Advertisement

Log in

Multivalent sialylation of β-thio-glycoclusters by Trypanosoma cruzi trans sialidase and analysis by high performance anion exchange chromatography

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The synthesis of multivalent sialylated glycoclusters is herein addressed by a chemoenzymatic approach using the trans-sialidase of Trypanosoma cruzi (TcTS). Multivalent β-thio-galactopyranosides and β-thio-lactosides were used as acceptor substrates and 3′-sialyllactose as the sialic acid donor. High performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) was shown to be an excellent technique for the analysis of the reaction products. Different eluting conditions were optimized to allow the simultaneous resolution of the sialylated species, as well as their neutral precursors. The TcTS efficiently transferred sialyl residues to di, tri, tetra and octa β-thiogalactosides. In the case of an octavalent thiolactoside, up to six polysialylated compounds could be resolved. Preparative sialylation reactions were performed using the tetravalent and octavalent acceptor substrates. The main sialylated derivatives could be unequivocally assigned by MALDI mass spectrometry. Inhibition of the transfer to the natural substrate, N-acetyllactosamine, was also studied. The octalactoside caused 82 % inhibition of sialic acid transfer when we used equimolar concentrations of donor, acceptor and inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chabre Y.M., Roy R.: Design and creativity in synthesis of multivalent neoglycoconjugates. Adv. Carbohydr. Chem. Biochem. 63, 165–393 (2010)

    Article  CAS  PubMed  Google Scholar 

  2. Deniaud D., Julienne K., Gouin S.G.: Insights in the rational design of synthetic multivalent glycoconjugates as lectin ligands. Org. Biomol. Chem. 9, 966–979 (2011)

    Article  CAS  PubMed  Google Scholar 

  3. Gouin S.G., Vanquelef E., García Fernández J.M., Ortiz Mellet C., Dupradeau F.-Y., Kovensky J.: Multi-Mannosides based on a carbohydrate scaffold: synthesis, force field development, molecular dynamics studies, and binding affinities for lectin Con A. J. Org. Chem. 72, 9032–9045 (2007)

  4. Gouin, S. G., García Fernández, J. M., Vanquelef, E., Dupradeau, F.-Y., Salomonsson, E., Leffler, H., Ortega-Muñoz, M., Nilsson, U. J., Kovensky, J.: Multimeric Lactoside “click clusters” as tools to investigate the effect of linker length in specific interactions with peanut lectin, galectin-1, and −3. Chem Bio Chem 11, 1430–1442 (2010)

  5. Cagnoni A.J., Kovensky J., Uhrig M.L.: Design and synthesis of hydrolytically stable multivalent ligands bearing thiodigalactoside analogues for peanut lectin and human galectin-3 binding. J. Org. Chem. 79, 6456–6467 (2014)

  6. Schmid S., Mishra A., Wunderlin M., Bäuerle P.: Mannose-functionalized dendritic oligothiophenes: synthesis, characterizations and studies on their interaction with Concanavalin A. Org. Biomol. Chem. 11, 5656–5665 (2013)

    Article  CAS  PubMed  Google Scholar 

  7. Gómez-García M., Benito J.M., Gutiérrez-Gallego R., Maestre A., Ortiz Mellet C., García Fernández J.M., Jiménez Blanco J.L.: Comparative studies on lectin–carbohydrate interactions in low and high density homo-and heteroglycoclusters. Org. Biomol. Chem. 8, 1849–1860 (2010)

    Article  PubMed  Google Scholar 

  8. Kushwaha D., Dwivedi P., Kuanar S.K., Tiwari V.K.: Click reaction in carbohydrate chemistry: recent developments and future perspective. Curr. Org. Synth. 10, 90–135 (2013)

    Article  CAS  Google Scholar 

  9. Bielski, R., Witczak, Z.: Paradigm and advantage of carbohydrate click chemistry strategy for future decoupling. In John Wiley and Sons (eds.) Click Chemistry in Glycoscience, New developments and strategies, pp. 3–30, Wiley, Hoboken (2013)

  10. Wang G.N., André S., Gabius H.J., Murphy P.V.: Bi- to tetravalent glycoclusters: synthesis, structure–activity profiles as lectin inhibitors and impact of combining both valency and headgroup tailoring on selectivity. Org. Biomol. Chem. 10, 6893–6907 (2012)

    Article  CAS  PubMed  Google Scholar 

  11. Ortiz Mellet, C., Méndez-Ardoy, A., García Fernández, J. M.: Click Multivalent Glycomaterials: Glycoclusters, Glycodendrimers, Glycopolymers, Hybrid Glycomaterials, and Glycosurfaces. In: John Wiley and Sons (eds.) Click Chemistry in Glycoscience, New developments and strategies, pp. 143–182, Wiley, Hoboken (2013)

  12. Astruc D., Liang L., Rapakousiou A., Ruiz J.: Click dendrimers and Triazole-related aspects: catalysts, mechanism, synthesis, and functions. A bridge between dendritic architectures and nanomaterials. Acc. Chem. Res. 45, 630–640 (2012)

    Article  CAS  PubMed  Google Scholar 

  13. Campo V.L., Ivanova I.M., Carvalho I., Lopes C.D., Carneiro Z.A., Saalbach G., Schenkman S., da Silva Santana J., Nepogodiev S.A., Field R.A.: Click chemistry oligomerisation of azido-alkyne-functionalised galactose accesses triazole-linked linear oligomers and macrocycles that inhibit Trypanosoma cruzi macrophage invasion. Tetrahedron. 71, 7344–7353 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Varki A.: Sialic acids as ligands in recognition phenomena. FASEB J. 11, 248–255 (1997)

    CAS  PubMed  Google Scholar 

  15. Varki A., Gagneux P.: Multifarious roles of sialic acids in immunity. Ann. N. Y. Acad. Sci. 1253, 16–36 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. O'Reilly M.K., Paulson J.C.: Multivalent ligands for siglecs. Methods Enzymol. 478, 343–363 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  17. Papp I., Sieben C., Ludwig K., Roskamp M., Böttcher C., Schlecht S., Herrmann A., Haag R.: Inhibition of influenza virus infection by multivalent sialic-acid-functionalized gold nanoparticles. Small. 6, 2900–2906 (2010)

    Article  CAS  PubMed  Google Scholar 

  18. Johansson S.M.C., Nilsson E.C., Elofsson M., Ahlskog N., Kihlberg J., Arnberg N.: Multivalent sialic acid conjugates inhibit adenovirus type 37 from binding to and infecting human corneal epithelial cells. Antivir. Res. 73, 92–100 (2007)

    Article  CAS  PubMed  Google Scholar 

  19. Meunier S.J., Roy R.: Polysialosides scaffolded on p-Tert-butylcalix[4]arene. Tetrahedron Lett. 37, 5469–5472 (1996)

    Article  CAS  Google Scholar 

  20. Zanini D., Roy R.: Synthesis of new α-Thiosialodendrimers and their binding properties to the sialic acid specific lectin from Limax flavus. J. Am. Chem. Soc. 119, 2088–2095 (1997)

    Article  CAS  Google Scholar 

  21. Marra A., Moni L., Pazzi D., Corallini A., Bridi D., Dondoni A.: Synthesis of sialoclusters appended to calix[4]arene platforms via multiple azide-alkyne cycloaddition. New inhibitors of hemagglutination and cytopathic effect mediated by BK and influenza A viruses. Org. Biomol. Chem. 6, 1396–1409 (2008)

    Article  CAS  PubMed  Google Scholar 

  22. Tollas A., Bereczki I., Borbás A., Vanderlinden E., Naesens L., Herczergh P.: Synthesis of a cluster-forming sialylthio-D-galactose fullerene conjugate and evaluation of its interaction with influenza virus hemagglutinin and neuraminidase. Bioorg. Med. Chem. Lett. 24, 2420–2423 (2014)

    Article  CAS  PubMed  Google Scholar 

  23. Oka H., Onagam T., Koyama T., Guo C.-T., Suzuki Y., Esumi Y., Hatano K., Terunuma D., Matsuoka K.: Syntheses and biological evaluations of carbosilane dendrimers uniformly functionalized with sialyl alpha(2 → 3) lactose moieties as inhibitors for human influenza viruses. Bioorg. Med. Chem. 17, 5465–5475 (2009)

    Article  CAS  PubMed  Google Scholar 

  24. Waldmann M., Jirmann R., Hoelscher K., Wienke M., Niemeyer F.C., Rehders D., Meyer B.: A Nanomolar multivalent ligand as entry inhibitor of the hemagglutinin of avian influenza. J. Am. Chem. Soc. 136, 783–788 (2014)

    Article  CAS  PubMed  Google Scholar 

  25. Schenkman S., Jiang M.S., Hart G.W., Nussenzweig V.: A novel cell surface trans-sialidase of Trypanosoma cruzi generates a stage-specific epitope required for invasion of mammalian cells. Cell. 65, 1117–1125 (1991)

    Article  CAS  PubMed  Google Scholar 

  26. Frasch A.C.C.: Functional diversity in the trans-sialidase and mucin families in Trypanosoma cruzi. Parasitol. Today. 16, 282–286 (2000)

    Article  CAS  PubMed  Google Scholar 

  27. Ferrero-Garcia M.A., Trombetta S.E., Sanchez D.O., Reglero A., Frasch A.C.C., Parodi A.J.: The action of Trypanosoma cruzi trans-sialidase on glycolipids and glycoproteins. Eur. J. Biochem. 213, 765–771 (1993)

    Article  CAS  PubMed  Google Scholar 

  28. Agusti R., Páris G., Ratier L., Frasch A.C.C., Lederkremer R.M.: Lactose derivates are inhibitors of Trypanosoma cruzi trans-sialidase activity toward conventional substrates in vitro and in vivo. Glycobiology. 14, 659–670 (2004)

    Article  CAS  PubMed  Google Scholar 

  29. Neres J., Bryce R.A., Douglas K.T.: Rational drug design in parasitology: trans-sialidase as a case study for Chagas' disease. Drug Discov. Today. 13, 110–117 (2008)

    Article  CAS  PubMed  Google Scholar 

  30. Schenkman S., Eichinger D., Pereira M.E.A., Nussenzweig V.: Structural and functional properties of Trypanosoma trans-sialidase. Annu. Rev. Microbiol. 48, 499–523 (1994)

    Article  CAS  PubMed  Google Scholar 

  31. Campo V.L., Carvalho I., Da Silva C.H.T.P., Schenkman S., Hill L., Nepogodieva S.A., Field R.A.: Cyclooligomerisation of azido-alkyne-functionalised sugars: synthesis of 1,6-linked cyclic pseudo-galactooligosaccharides and assessment of their sialylation by Trypanosoma cruzi trans-sialidase. Chem. Sci. 1, 507–514 (2010)

    Article  Google Scholar 

  32. Neres J., Buschiazzo A., Alzari P.M., Walsh L., Douglas K.T.: Continuous fluorimetric assay for high-throughput screening of inhibitors of trans-sialidase from Trypanosoma cruzi. Anal. Biochem. 357, 302–304 (2006)

    Article  CAS  PubMed  Google Scholar 

  33. Agustí R., Mendoza V.M., Gallo-Rodriguez C., Lederkremer R.M.: Selective sialylation of 2,3-di-O-(β-D-galactopyranosyl)-D-galactose catalyzed by Trypanosoma cruzi trans-sialidase. Tetrahedron-Asymmetry. 16, 541–551 (2005)

    Article  Google Scholar 

  34. Mendoza V.M., Agusti R., Gallo-Rodriguez C., Lederkremer R.M.: Synthesis of the O-linked pentasaccharide in glycoproteins of Trypanosoma cruzi and selective sialylation by recombinant trans-sialidase Carbohydr. Res. 341, 1488–1497 (2006)

    CAS  Google Scholar 

  35. Agusti R., Giorgi M.E., Mendoza V.M., Kashiwagi G., Lederkremer R.M., Gallo-Rodríguez C.: Synthesis of the O-linked hexasaccharide containing β-D-Galp-(1 → 2)-D-Galf in Trypanosoma cruzi mucins. Differences on sialylation by trans-sialidase of the two constituent hexasaccharides. Bioorg. Med. Chem. 23, 1213–1222 (2015)

    Article  CAS  PubMed  Google Scholar 

  36. Cano M.E., Agusti R., Cagnoni A.J., Tesoriero M.F., Kovensky J., Uhrig M.L., Lederkremer R.M.: Synthesis of divalent ligands of β-thio- and β-N-galactopyranosides and related lactosides and their evaluation as substrates and inhibitors of Trypanosoma cruzi trans-sialidase. Beilstein J. Org. Chem. 10, 3073–3086 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  37. Agusti R., Giorgi M.E., Lederkremer R.M.: The trans-sialidase from Trypanosoma cruzi efficiently transfers alpha-(2 → 3)-linked N-glycolylneuraminic acid to terminal beta-galactosyl units. Carbohydr. Res. 342, 2465–2469 (2007)

    Article  CAS  PubMed  Google Scholar 

  38. Cagnoni A.J., Varela O., Gouin S.G., Kovensky J., Uhrig M.L.: Synthesis of Multivalent Glycoclusters from 1-Thio-β-D-galactose and Their Inhibitory Activity against the β-Galactosidase from E. coli. J. Org. Chem. 76, 3064–3077 (2011)

  39. Cagnoni, A. J., Varela, O., Uhrig, M. L., Kovensky, J.: Efficient synthesis of thiolactoside glycoclusters by ruthenium-catalyzed cycloaddition reaction of disubstituted alkynes on carbohydrate scaffolds. Eur. J. Org. Chem. 972–983 (2013)

  40. Rohrer, J.: Analysis of Carbohydrates by High-Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection (HPAE-PAD). Thermo Scientific Technical Note N° 20 (2013)

  41. Dionex Carbohydrate Columns. http://www.dionex.com/en-us/products/columns/bio/carbohydrate/lp-73362.html

Download references

Acknowledgments

We thank O. Campetella and his group from Universidad Nacional General San Martín (UNSAM) Argentina, for the kind gift of trans-sialidase from T. cruzi, and the personal of CEQUIBIEM (CONICET-UBA) for the MALDI experiments. Support for this work from the National Agency for Promotion of Science and Technology, ANPCyT, the National Research Council CONICET and the University of Buenos Aires is gratefully acknowledged. María E. Cano is a fellow from CONICET. Rosalía Agustí, María Laura Uhrig and Rosa M. de Lederkremer are research members of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rosalía Agustí or María Laura Uhrig.

Electronic Supplementary Material

ESM 1

(PDF 491 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agustí, R., Cano, M.E., Cagnoni, A.J. et al. Multivalent sialylation of β-thio-glycoclusters by Trypanosoma cruzi trans sialidase and analysis by high performance anion exchange chromatography. Glycoconj J 33, 809–818 (2016). https://doi.org/10.1007/s10719-016-9676-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-016-9676-0

Keywords

Navigation