Skip to main content

Advertisement

Log in

A review of methods for interpretation of glycopeptide tandem mass spectral data

  • Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Despite the publication of several software tools for analysis of glycopeptide tandem mass spectra, there remains a lack of consensus regarding the most effective and appropriate methods. In part, this reflects problems with applying standard methods for proteomics database searching and false discovery rate calculation. While the analysis of small post-translational modifications (PTMs) may be regarded as an extension of proteomics database searching, glycosylation requires specialized approaches. This is because glycans are large and heterogeneous by nature, causing glycopeptides to exist as multiple glycosylated variants. Thus, the mass of the peptide cannot be calculated directly from that of the intact glycopeptide. In addition, the chemical nature of the glycan strongly influences product ion patterns observed for glycopeptides. As a result, glycopeptidomics requires specialized bioinformatics methods. We summarize the recent progress towards a consensus for effective glycopeptide tandem mass spectrometric analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wuhrer, M., Deelder, A.M., Hokke, C.H.: Protein glycosylation analysis by liquid chromatography-mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 825(2), 124–133 (2005). doi:10.1016/j.jchromb.2005.01.030

    Article  CAS  Google Scholar 

  2. Pan, S., Chen, R., Aebersold, R., Brentnall, T.A.: Mass spectrometry based glycoproteomics--from a proteomics perspective. Mol. Cell. Proteomics : MCP 10(1), R110 003251 (2011). doi:10.1074/mcp.R110.003251

    Article  PubMed  PubMed Central  Google Scholar 

  3. Woodin, C.L., Maxon, M., Desaire, H.: Software for automated interpretation of mass spectrometry data from glycans and glycopeptides. Analyst 138(10), 2793–2803 (2013). doi:10.1039/C2AN36042J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Leymarie, N., Zaia, J.: Effective use of mass spectrometry for glycan and glycopeptide structural analysis. Anal. Chem. 84(7), 3040–3048 (2012). doi:10.1021/ac3000573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dallas, D.C., Martin, W.F., Hua, S., German, J.B.: Automated glycopeptide analysis--review of current state and future directions. Brief. Bioinform. 14(3), 361–374 (2013). doi:10.1093/bib/bbs045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li, F., Glinskii, O.V., Glinsky, V.V.: Glycobioinformatics: current strategies and tools for data mining in MS-based glycoproteomics. Proteomics 13(2), 341–354 (2013). doi:10.1002/pmic.201200149

    Article  CAS  PubMed  Google Scholar 

  7. Tang, H., Mayampurath, A., Yu, C.Y., Mechref, Y.: Bioinformatics protocols in glycomics and glycoproteomics. Curr. Protoc. Protein Sci. 76, 2 15 11–17. (2014). doi:10.1002/0471140864.ps0215s76

  8. Desaire, H., Hua, D.: When can glycopeptides be assigned based solely on high-resolution mass spectrometry data? Int. J. Mass Spectrom. 287(1–3), 21–26 (2009). doi:10.1016/j.ijms.2008.12.001

    Article  CAS  Google Scholar 

  9. Biemann, K., Gapp, F., Seibl, J.: Application of mass spectrometry to structure problems. I. Amino acid sequence in peptides. J. Am. Chem. Soc. 81(2274) (1959)

  10. Biemann, K., Martin, S.A.: Mass spectrometric determination of the amino acid sequence of peptides and proteins. Mass Spectrom. Rev. 6(1), 1–76 (1987)

    Article  CAS  Google Scholar 

  11. Meng, C.K., Mann, M., Fenn, J.B.: Of protons or proteins. Z. Phys. D 10, 361–368 (1988)

    Article  CAS  Google Scholar 

  12. Eng, J.K., McCormack, A.L., Yates, J.R.: An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5(11), 976–989 (1994). doi:10.1016/1044-0305(94)80016-2

    Article  CAS  PubMed  Google Scholar 

  13. Mann, M., Wilm, M.: Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal. Chem. 66(24), 4390–4399 (1994)

    Article  CAS  PubMed  Google Scholar 

  14. Johnson, R.S., Biemann, K.: Computer program (SEQPEP) to aid in the interpretation of high-energy collision tandem mass spectra of peptides. Biomed. Environ. Mass Spectrom. 18(11), 945–957 (1989). doi:10.1002/bms.1200181102

    Article  CAS  PubMed  Google Scholar 

  15. Frank, A., Pevzner, P.: PepNovo: de novo peptide sequencing via probabilistic network modeling. Anal. Chem. 77(4), 964–973 (2005)

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, J., Xin, L., Shan, B., Chen, W., Xie, M., Yuen, D., Zhang, W., Zhang, Z., Lajoie, G.A., Ma, B.: PEAKS DB: de novo sequencing assisted database search for sensitive and accurate peptide identification. Mol. Cell. Proteomics 11(4), M111 010587 (2012). doi:10.1074/mcp.M111.010587

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jeong, K., Kim, S., Pevzner, P.A.: UniNovo: a universal tool for de novo peptide sequencing. Bioinformatics 29(16), 1953–1962 (2013). doi:10.1093/bioinformatics/btt338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moore, R.E., Young, M.K., Lee, T.D.: Protein identification using a quadrupole ion trap mass spectrometer and SEQUEST database matching. Curr. Protoc. Protein Sci. Chapter 16, Unit 16 10. (2001). doi:10.1002/0471140864.ps1610s22

  19. Clauser, K.R., Baker, P., Burlingame, A.L.: Role of accurate mass measurement (+/− 10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Anal. Chem. 71(14), 2871–2882 (1999)

    Article  CAS  PubMed  Google Scholar 

  20. Perkins, D.N., Pappin, D.J., Creasy, D.M., Cottrell, J.S.: Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18), 3551–3567 (1999). doi:10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2

    Article  CAS  PubMed  Google Scholar 

  21. Craig, R., Beavis, R.C.: TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20(9), 1466–1467 (2004). doi:10.1093/bioinformatics/bth092

    Article  CAS  PubMed  Google Scholar 

  22. Geer, L.Y., Markey, S.P., Kowalak, J.A., Wagner, L., Xu, M., Maynard, D.M., Yang, X., Shi, W., Bryant, S.H.: Open mass spectrometry search algorithm. J. Proteome Res. 3(5), 958–964 (2004). doi:10.1021/pr0499491

    Article  CAS  PubMed  Google Scholar 

  23. Tabb, D.L., Fernando, C.G., Chambers, M.C.: MyriMatch: highly accurate tandem mass spectral peptide identification by multivariate hypergeometric analysis. J. Proteome Res. 6(2), 654–661 (2007). doi:10.1021/pr0604054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cox, J., Neuhauser, N., Michalski, A., Scheltema, R.A., Olsen, J.V., Mann, M.: Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10(4), 1794–1805 (2011). doi:10.1021/pr101065j

    Article  CAS  PubMed  Google Scholar 

  25. Eng, J.K., Jahan, T.A., Hoopmann, M.R.: Comet: an open-source MS/MS sequence database search tool. Proteomics 13(1), 22–24 (2013). doi:10.1002/pmic.201200439

    Article  CAS  PubMed  Google Scholar 

  26. Wenger, C.D., Coon, J.J.: A proteomics search algorithm specifically designed for high-resolution tandem mass spectra. J. Proteome Res. 12(3), 1377–1386 (2013). doi:10.1021/pr301024c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dorfer, V., Pichler, P., Stranzl, T., Stadlmann, J., Taus, T., Winkler, S., Mechtler, K.: MS Amanda, a universal identification algorithm optimized for high accuracy tandem mass spectra. J. Proteome Res. 13(8), 3679–3684 (2014). doi:10.1021/pr500202e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shteynberg, D., Deutsch, E.W., Lam, H., Eng, J.K., Sun, Z., Tasman, N., Mendoza, L., Moritz, R.L., Aebersold, R., Nesvizhskii, A.I.: iProphet: multi-level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates. Mol. Cell. Proteomics 10(12), M111 007690 (2011). doi:10.1074/mcp.M111.007690

    Article  PubMed  PubMed Central  Google Scholar 

  29. Vaudel, M., Barsnes, H., Berven, F.S., Sickmann, A., Martens, L.: SearchGUI: an open-source graphical user interface for simultaneous OMSSA and X!Tandem searches. Proteomics 11(5), 996–999 (2011). doi:10.1002/pmic.201000595

    Article  CAS  PubMed  Google Scholar 

  30. Choudhary, C., Mann, M.: Decoding signalling networks by mass spectrometry-based proteomics. Nat. Rev. Mol. Cell Biol. 11(6), 427–439 (2010). doi:10.1038/nrm2900

    Article  CAS  PubMed  Google Scholar 

  31. Wuhrer, M., Deelder, A.M., van der Burgt, Y.E.: Mass spectrometric glycan rearrangements. Mass Spectrom. Rev. 30(4), 664–680 (2011). doi:10.1002/mas.20337

    Article  CAS  PubMed  Google Scholar 

  32. Reinhold, V.N., Sheeley, D.M.: Detailed characterization of carbohydrate linkage and sequence in an ion trap mass spectrometer: glycosphingolipids. Anal. Biochem. 259(1), 28–33 (1998)

    Article  CAS  PubMed  Google Scholar 

  33. Sheeley, D.M., Reinhold, V.N.: Structural characterization of carbohydrate sequence, linkage, and branching in a quadrupole Ion trap mass spectrometer: neutral oligosaccharides and N-linked glycans. Anal. Chem. 70(14), 3053–3059 (1998)

    Article  CAS  PubMed  Google Scholar 

  34. Khatri, K., Staples, G.O., Leymarie, N., Leon, D.R., Turiák, L., Huang, Y., Yip, S., Hu, H., Heckendorf, C.F., Zaia, J.: Confident assignment of site-specific glycosylation in complex glycoproteins in a single step. J. Proteome Res. 13(10), 4347–4355 (2014). doi:10.1021/pr500506z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. An, Y., Cipollo, J.F.: An unbiased approach for analysis of protein glycosylation and application to influenza vaccine hemagglutinin. Anal. Biochem. 415(1), 67–80 (2011). doi:10.1016/j.ab.2011.04.018

    Article  CAS  PubMed  Google Scholar 

  36. An, Y., Rininger, J.A., Jarvis, D.L., Jing, X., Ye, Z., Aumiller, J.J., Eichelberger, M., Cipollo, J.F.: Comparative glycomics analysis of influenza Hemagglutinin (H5N1) produced in vaccine relevant cell platforms. J. Proteome Res. 12(8), 3707–3720 (2013). doi:10.1021/pr400329k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lynn, K.S., Chen, C.C., Lih, T.M., Cheng, C.W., Su, W.C., Chang, C.H., Cheng, C.Y., Hsu, W.L., Chen, Y.J., Sung, T.Y.: MAGIC: an automated N-linked glycoprotein identification tool using a Y1-ion pattern matching algorithm and in silico MS(2) approach. Anal. Chem. 87(4), 2466–2473 (2015). doi:10.1021/ac5044829

    Article  CAS  PubMed  Google Scholar 

  38. Håkansson, K., Cooper, H.J., Emmett, M.R., Costello, C.E., Marshall, A.G., Nilsson, C.L.: Electron capture dissociation and Infrared multiphoton dissociation MS/MS of an N-glycosylated tryptic peptide to yield complementary sequence information. Anal. Chem. 73, 4530–4536 (2001)

    Article  PubMed  Google Scholar 

  39. Hogan, J.M., Pitteri, S.J., Chrisman, P.A., McLuckey, S.A.: Complementary structural information from a tryptic N-linked glycopeptide via electron transfer ion/ion reactions and collision-induced dissociation. J. Proteome Res. 4(2), 628–632 (2005). doi:10.1021/pr049770q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mechref, Y.: Use of CID/ETD mass spectrometry to analyze glycopeptides. Curr. Protoc. Protein Sci. Chapter 12, Unit 12 11 11–11. (2012). doi:10.1002/0471140864.ps1211s68

  41. Singh, C., Zampronio, C.G., Creese, A.J., Cooper, H.J.: Higher energy collision dissociation (HCD) product ion-triggered electron transfer dissociation (ETD) mass spectrometry for the analysis of N-linked glycoproteins. J. Proteome Res. 11(9), 4517–4525 (2012). doi:10.1021/pr300257c

    Article  CAS  PubMed  Google Scholar 

  42. Myers, S.A., Daou, S., el Affar, B., Burlingame, A.: Electron transfer dissociation (ETD): the mass spectrometric breakthrough essential for O-GlcNAc protein site assignments-a study of the O-GlcNAcylated protein host cell factor C1. Proteomics 13(6), 982–991 (2013). doi:10.1002/pmic.201200332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Horn, D.M., Ge, Y., McLafferty, F.W.: Activated ion electron capture dissociation for mass spectral sequencing of larger (42 kDa) proteins. Anal. Chem. 72(20), 4778–4784 (2000)

    Article  CAS  PubMed  Google Scholar 

  44. Frese, C.K., Altelaar, A.F., van den Toorn, H., Nolting, D., Griep-Raming, J., Heck, A.J., Mohammed, S.: Toward full peptide sequence coverage by dual fragmentation combining electron-transfer and higher-energy collision dissociation tandem mass spectrometry. Anal. Chem. 84(22), 9668–9673 (2012). doi:10.1021/ac3025366

    Article  CAS  PubMed  Google Scholar 

  45. Crouch, E., Nikolaidis, N., McCormack, F., McDonald, B., Allen, K., Rynkiewicz, M., Cafarella, T., White, M., Lewnard, K., Leymarie, N., Zaia, J., Seaton, B., Hartshorn, K.: Mutagenesis of SP-D informed by evolution and xray crystallography enhances defenses against Influenza A Virus in vivo. J. Biol. Chem. 286(47), 40681–40692 (2011). doi:10.1074/jbc.M111.300673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Madsen, J.A., Ko, B.J., Xu, H., Iwashkiw, J.A., Robotham, S.A., Shaw, J.B., Feldman, M.F., Brodbelt, J.S.: Concurrent automated sequencing of the glycan and peptide portions of O-linked glycopeptide anions by ultraviolet photodissociation mass spectrometry. Anal. Chem. 85(19), 9253–9261 (2013). doi:10.1021/ac4021177

    Article  CAS  PubMed  Google Scholar 

  47. Ko, B.J., Brodbelt, J.S.: Comparison of glycopeptide fragmentation by collision induced dissociation and ultraviolet photodissociation. Int. J. Mass Spectrom. 377(1), 385–392 (2015). doi:10.1016/j.ijms.2014.07.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kessner, D., Chambers, M., Burke, R., Agus, D., Mallick, P.: ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24(21), 2534–2536 (2008). doi:10.1093/bioinformatics/btn323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Reinert, K., Kohlbacher, O.: OpenMS and TOPP: open source software for LC-MS data analysis. Methods Mol. Biol. 604, 201–211 (2010). doi:10.1007/978-1-60761-444-9_14

    Article  CAS  PubMed  Google Scholar 

  50. Jaitly, N., Mayampurath, A., Littlefield, K., Adkins, J.N., Anderson, G.A., Smith, R.D.: Decon2LS: an open-source software package for automated processing and visualization of high resolution mass spectrometry data. BMC Bioinforma. 10, 87 (2009). doi:10.1186/1471-2105-10-87

    Article  Google Scholar 

  51. Slysz, G.W., Baker, E.S., Shah, A.R., Jaitly, N., Anderson, G.A., Smith, R.D.: The DeconTools Framework: an Application Programming Interface Enabling Flexibility in Accurate Mass and Time Tag Workflows for Proteomics and Metabolomics. Proc. 58th ASMS Conf. Mass Spectrom. Allied Topics. (2010).

  52. Huddleston, M.J., Bean, M.F., Carr, S.A.: Collisional fragmentation of glycopeptides by electrospray ionization LC/MS and LC/MS/MS: methods for selective detection of glycopeptides in protein digests. Anal. Chem. 65(7), 877–884 (1993)

    Article  CAS  PubMed  Google Scholar 

  53. Carr, S.A., Huddleston, M.J., Bean, M.F.: Selective identification and differentiation of N- and O-linked oligosaccharides in glycoproteins by liquid chromatography-mass spectrometry. Protein Sci. 2(2), 183–196 (1993)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Froehlich, J.W., Dodds, E.D., Wilhelm, M., Serang, O., Steen, J.A., Lee, R.S.: A classifier based on accurate mass measurements to aid large scale, unbiased glycoproteomics. Mol. Cell. Proteomics 12(4), 1017–1025 (2013). doi:10.1074/mcp.M112.025494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Go, E.P., Liao, H.X., Alam, S.M., Hua, D., Haynes, B.F., Desaire, H.: Characterization of host-cell line specific glycosylation profiles of early transmitted/founder HIV-1 gp120 envelope proteins. J. Proteome Res. 12(3), 1223–1234 (2013). doi:10.1021/pr300870t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Strum, J.S., Nwosu, C.C., Hua, S., Kronewitter, S.R., Seipert, R.R., Bachelor, R.J., An, H.J., Lebrilla, C.B.: Automated assignments of N- and O-site specific glycosylation with extensive glycan heterogeneity of glycoprotein mixtures. Anal. Chem. 85(12), 5666–5675 (2013). doi:10.1021/ac4006556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Plavina, T., Wakshull, E., Hancock, W.S., Hincapie, M.: Combination of abundant protein depletion and multi-lectin affinity chromatography (M-LAC) for plasma protein biomarker discovery. J. Proteome Res. 6(2), 662–671 (2007). doi:10.1021/pr060413k

    Article  CAS  PubMed  Google Scholar 

  58. Madera, M., Mechref, Y., Novotny, M.V.: Combining lectin microcolumns with high-resolution separation techniques for enrichment of glycoproteins and glycopeptides. Anal. Chem. 77(13), 4081–4090 (2005). doi:10.1021/ac050222l

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cheng, K., Chen, R., Seebun, D., Ye, M., Figeys, D., Zou, H.: Large-scale characterization of intact N-glycopeptides using an automated glycoproteomic method. J. Proteomics 110, 145–154 (2014). doi:10.1016/j.jprot.2014.08.006

    Article  CAS  PubMed  Google Scholar 

  60. Ranzinger, R., Frank, M., von der Lieth, C.W., Herget, S.: Glycome-DB.org: a portal for querying across the digital world of carbohydrate sequences. Glycobiology 19(12), 1563–1567 (2009). doi:10.1093/glycob/cwp137

    Article  CAS  PubMed  Google Scholar 

  61. Campbell, M.P., Peterson, R., Mariethoz, J., Gasteiger, E., Akune, Y., Aoki-Kinoshita, K.F., Lisacek, F., Packer, N.H.: UniCarbKB: building a knowledge platform for glycoproteomics. Nucleic Acids Res. 42(1), D215–D221 (2014). doi:10.1093/nar/gkt1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hayes, C.A., Karlsson, N.G., Struwe, W.B., Lisacek, F., Rudd, P.M., Packer, N.H., Campbell, M.P.: UniCarb-DB: a database resource for glycomic discovery. Bioinformatics 27(9), 1343–1344 (2011). doi:10.1093/bioinformatics/btr137

    Article  CAS  PubMed  Google Scholar 

  63. Campbell, M.P., Hayes, C.A., Struwe, W.B., Wilkins, M.R., Aoki-Kinoshita, K.F., Harvey, D.J., Rudd, P.M., Kolarich, D., Lisacek, F., Karlsson, N.G., Packer, N.H.: UniCarbKB: putting the pieces together for glycomics research. Proteomics 11(21), 4117–4121 (2011). doi:10.1002/pmic.201100302

    Article  CAS  PubMed  Google Scholar 

  64. Aoki-Kinoshita, K.: GlyTouCan: the glycan repository. https://www.glytoucan.org/. (2015).

  65. Gupta, N., Bandeira, N., Keich, U., Pevzner, P.A.: Target-decoy approach and false discovery rate: when things may go wrong. J. Am. Soc. Mass Spectrom. 22(7), 1111–1120 (2011). doi:10.1007/s13361-011-0139-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Elias, J.E., Gygi, S.P.: Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4(3), 207–214 (2007). doi:10.1038/nmeth1019

    Article  CAS  PubMed  Google Scholar 

  67. Elias, J.E., Gygi, S.P.: Target-decoy search strategy for mass spectrometry-based proteomics. Methods Mol. Biol. 604, 55–71 (2010). doi:10.1007/978-1-60761-444-9_5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kim, S., Gupta, N., Pevzner, P.A.: Spectral probabilities and generating functions of tandem mass spectra: a strike against decoy databases. J. Proteome Res. 7(8), 3354–3363 (2008). doi:10.1021/pr8001244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Storey, J.D.: A direct approach to false discovery rates. J. Roy. Stat. Soc. Ser. B. (Stat. Method.) 64(3), 479–498 (2002). doi:10.1111/1467-9868.00346

    Article  Google Scholar 

  70. Kim, S., Mischerikow, N., Bandeira, N., Navarro, J.D., Wich, L., Mohammed, S., Heck, A.J., Pevzner, P.A.: The generating function of CID, ETD, and CID/ETD pairs of tandem mass spectra: applications to database search. Mol. Cell. Proteomics 9(12), 2840–2852 (2010). doi:10.1074/mcp.M110.003731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kall, L., Storey, J.D., Noble, W.S.: Non-parametric estimation of posterior error probabilities associated with peptides identified by tandem mass spectrometry. Bioinformatics 24(16), i42–i48 (2008). doi:10.1093/bioinformatics/btn294

    Article  PubMed  PubMed Central  Google Scholar 

  72. Cooper, C.A., Gasteiger, E., Packer, N.H.: GlycoMod--a software tool for determining glycosylation compositions from mass spectrometric data. Proteomics 1(2), 340–349 (2001). doi:10.1002/1615-9861(200102)1:2<340::AID-PROT340>3.0.CO;2-B

    Article  CAS  PubMed  Google Scholar 

  73. An, H.J., Tillinghast, J.S., Woodruff, D.L., Rocke, D.M., Lebrilla, C.B.: A new computer program (GlycoX) to determine simultaneously the glycosylation sites and oligosaccharide heterogeneity of glycoproteins. J. Proteome Res. 5(10), 2800–2808 (2006). doi:10.1021/pr0602949

    Article  CAS  PubMed  Google Scholar 

  74. Maass, K., Ranzinger, R., Geyer, H., von der Lieth, C.W., Geyer, R.: “Glyco-peakfinder”--de novo composition analysis of glycoconjugates. Proteomics 7(24), 4435–4444 (2007). doi:10.1002/pmic.200700253

    Article  CAS  PubMed  Google Scholar 

  75. Go, E.P., Rebecchi, K.R., Dalpathado, D.S., Bandu, M.L., Zhang, Y., Desaire, H.: GlycoPep DB: a tool for glycopeptide analysis using a “Smart Search”. Anal. Chem. 79(4), 1708–1713 (2007). doi:10.1021/ac061548c

    Article  CAS  PubMed  Google Scholar 

  76. Ozohanics, O., Krenyacz, J., Ludanyi, K., Pollreisz, F., Vekey, K., Drahos, L.: GlycoMiner: a new software tool to elucidate glycopeptide composition. Rapid Commun. Mass Spectrom. 22(20), 3245–3254 (2008). doi:10.1002/rcm.3731

    Article  CAS  PubMed  Google Scholar 

  77. Deshpande, N., Jensen, P.H., Packer, N.H., Kolarich, D.: GlycoSpectrumScan: fishing glycopeptides from MS spectra of protease digests of human colostrum sIgA. J. Proteome Res. 9(2), 1063–1075 (2010). doi:10.1021/pr900956x

    Article  CAS  PubMed  Google Scholar 

  78. Clerens, S., Van den Ende, W., Verhaert, P., Geenen, L., Arckens, L.: Sweet Substitute: a software tool for in silico fragmentation of peptide-linked N-glycans. Proteomics 4(3), 629–632 (2004). doi:10.1002/pmic.200300572

    Article  CAS  PubMed  Google Scholar 

  79. Ren, J.M., Rejtar, T., Li, L., Karger, B.L.: N-Glycan structure annotation of glycopeptides using a linearized glycan structure database (GlyDB). J. Proteome Res. 6(8), 3162–3173 (2007). doi:10.1021/pr070111y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Goldberg, D., Bern, M., Parry, S., Sutton-Smith, M., Panico, M., Morris, H.R., Dell, A.: Automated N-glycopeptide identification using a combination of single- and tandem-MS. J. Proteome Res. 6(10), 3995–4005 (2007). doi:10.1021/pr070239f

    Article  CAS  PubMed  Google Scholar 

  81. Joenvaara, S., Ritamo, I., Peltoniemi, H., Renkonen, R.: N-glycoproteomics - an automated workflow approach. Glycobiology 18(4), 339–349 (2008). doi:10.1093/glycob/cwn013

    Article  CAS  PubMed  Google Scholar 

  82. Peltoniemi, H., Joenväärä, S., Renkonen, R.: De novo glycan structure search with the CID MS/MS spectra of native N-glycopeptides. Glycobiology 19(7), 707–714 (2009). doi:10.1093/glycob/cwp034

    Article  CAS  PubMed  Google Scholar 

  83. UniProt, C.: The Universal Protein Resource (UniProt) 2009. Nucleic Acids Res. 37(Database issue), D169–D174 (2009). doi:10.1093/nar/gkn664

    Google Scholar 

  84. Beausoleil, S.A., Villen, J., Gerber, S.A., Rush, J., Gygi, S.P.: A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat. Biotechnol. 24(10), 1285–1292 (2006). doi:10.1038/nbt1240

    Article  CAS  PubMed  Google Scholar 

  85. Wu, Y., Mechref, Y., Klouckova, I., Mayampurath, A., Novotny, M.V., Tang, H.: Mapping site-specific protein N-glycosylations through liquid chromatography/mass spectrometry and targeted tandem mass spectrometry. Rapid Commun. Mass Spectrom. 24(7), 965–972 (2010). doi:10.1002/rcm.4474

    Article  CAS  PubMed  Google Scholar 

  86. Mayampurath, A.M., Wu, Y., Segu, Z.M., Mechref, Y., Tang, H.: Improving confidence in detection and characterization of protein N-glycosylation sites and microheterogeneity. Rapid Commun. Mass Spectrom. : RCM 25(14), 2007–2019 (2011). doi:10.1002/rcm.5059

    Article  CAS  PubMed  Google Scholar 

  87. Pompach, P., Chandler, K.B., Lan, R., Edwards, N., Goldman, R.: Semi-automated identification of N-Glycopeptides by hydrophilic interaction chromatography, nano-reverse-phase LC-MS/MS, and glycan database search. J. Proteome Res. 11(3), 1728–1740 (2012). doi:10.1021/pr201183w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Woodin, C.L., Hua, D., Maxon, M., Rebecchi, K.R., Go, E.P., Desaire, H.: GlycoPep grader: a web-based utility for assigning the composition of N-linked glycopeptides. Anal. Chem. 84(11), 4821–4829 (2012). doi:10.1021/ac300393t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhu, Z., Hua, D., Clark, D.F., Go, E.P., Desaire, H.: GlycoPep Detector: a tool for assigning mass spectrometry data of N-linked glycopeptides on the basis of their electron transfer dissociation spectra. Anal. Chem. 85(10), 5023–5032 (2013). doi:10.1021/ac400287n

    Article  CAS  PubMed  Google Scholar 

  90. Zhu, Z., Su, X., Go, E.P., Desaire, H.: New glycoproteomics software, GlycoPep evaluator, generates decoy glycopeptides de novo and enables accurate false discovery rate analysis for small data sets. Anal. Chem. 86(18), 9212–9219 (2014). doi:10.1021/ac502176n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mayampurath, A., Yu, C.Y., Song, E., Balan, J., Mechref, Y., Tang, H.: Computational framework for identification of intact glycopeptides in complex samples. Anal. Chem. 86(1), 453–463 (2014). doi:10.1021/ac402338u

    Article  CAS  PubMed  Google Scholar 

  92. Wu, S.W., Liang, S.Y., Pu, T.H., Chang, F.Y., Khoo, K.H.: Sweet-Heart - an integrated suite of enabling computational tools for automated MS2/MS3 sequencing and identification of glycopeptides. J. Proteomics 84, 1–16 (2013). doi:10.1016/j.jprot.2013.03.026

    Article  CAS  PubMed  Google Scholar 

  93. Wu, S.W., Pu, T.H., Viner, R., Khoo, K.H.: Novel LC-MS(2) product dependent parallel data acquisition function and data analysis workflow for sequencing and identification of intact glycopeptides. Anal. Chem. 86(11), 5478–5486 (2014). doi:10.1021/ac500945m

    Article  CAS  PubMed  Google Scholar 

  94. Serang, O., Froehlich, J.W., Muntel, J., McDowell, G., Steen, H., Lee, R.S., Steen, J.A.: SweetSEQer, simple de novo filtering and annotation of glycoconjugate mass spectra. Mol. Cell Proteomics : MCP 12(6), 1735–1740 (2013). doi:10.1074/mcp.O112.025940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. He, L., Xin, L., Shan, B., Lajoie, G.A., Ma, B.: GlycoMaster DB: software to assist the automated identification of N-linked glycopeptides by tandem mass spectrometry. J. Proteome Res. 13(9), 3881–3895 (2014). doi:10.1021/pr401115y

    Article  CAS  PubMed  Google Scholar 

  96. Apte, A., Meitei, N.S.: Bioinformatics in glycomics: glycan characterization with mass spectrometric data using SimGlycan. Methods Mol. Biol. 600, 269–281 (2010). doi:10.1007/978-1-60761-454-8_19

    Article  CAS  PubMed  Google Scholar 

  97. Bern, M., Kil, Y.J., Becker, C.: Byonic: advanced peptide and protein identification software. Curr. Protoc. Bioinforma. Chapter 13, 13–20. (2012). doi:10.1002/0471250953.bi1320s40

Download references

Acknowledgments

The authors are supported by NIH grant P41GM104603. Thermo-Fisher Scientific provided instrument time for the acquisition of tandem mass spectra shown in Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Zaia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Khatri, K., Klein, J. et al. A review of methods for interpretation of glycopeptide tandem mass spectral data. Glycoconj J 33, 285–296 (2016). https://doi.org/10.1007/s10719-015-9633-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-015-9633-3

Keywords

Navigation