Skip to main content

Advertisement

Log in

Metabolic glycoengineering bacteria for therapeutic, recombinant protein, and metabolite production applications

  • Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Metabolic glycoengineering is a specialization of metabolic engineering that focuses on using small molecule metabolites to manipulate biosynthetic pathways responsible for oligosaccharide and glycoconjugate production. As outlined in this article, this technique has blossomed in mammalian systems over the past three decades but has made only modest progress in prokaryotes. Nevertheless, a sufficient foundation now exists to support several important applications of metabolic glycoengineering in bacteria based on methods to preferentially direct metabolic intermediates into pathways involved in lipopolysaccharide, peptidoglycan, teichoic acid, or capsule polysaccharide production. An overview of current applications and future prospects for this technology are provided in this report.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., Picataggio, S.: Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267, 240–243 (1995)

    Article  CAS  PubMed  Google Scholar 

  2. Kumar, V., Ramakrishnan, S., Teeri, T.T., Knowles, J.K.C., Hartley, B.S.: Saccharomyces cerevisiae cells secreting an Aspergillus niger β-galactosidase grow on whey permeate. Nat. Biotechnol. 10, 82–85 (1992)

    Article  CAS  Google Scholar 

  3. Brabetz, W., Liebl, W., Schleifer, K.H.: Studies on the utilization of lactose by Corynebacterium glutamicum, bearing the lactose operon of Escherichia coli. Arch. Microbiol. 155, 607–612 (1991)

    Article  CAS  PubMed  Google Scholar 

  4. Slater, S.C., Voige, W., Dennis, D.: Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-b-hydroxybutyrate biosynthetic pathway. J. Bacteriol. 170, 4431–4436 (1998)

    Google Scholar 

  5. Schubert, P., Steinbuchel, A., Schlegel, H.G.: Cloning of the Alcaligenes eutrophus genes for synthesis of poly-b-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J. Bacteriol. 170, 4837–4847 (1988)

    Google Scholar 

  6. Ikeda, M., Katsumata, R.: Metabolic engineering to produce tyrosine or phenylalanine in a tryptophan-producing Corynebacterium glutamicum strain. Appl. Environ. Microbiol. 58, 781 (1992)

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Eikmanns, B.J., Kleinertz, E., Liebl, W., Sahm, H.: A family of Corynebacterium glutamicum / Escherichia coli shuttle vectors for cloning, controlled gene expression, and promoter probing. Gene 102, 93–98 (1991)

    Article  CAS  PubMed  Google Scholar 

  8. Colon, G., Nguyen, T., Jetten, M.S.M., Sinskey, A., Stephanopoulos, G.: Production of isoleucine by overexpression of ilvA in a Corynebacterium lactofermentum threonine producer. Appl. Microbiol. Biotechnol. 43, 482–488 (1995)

    Article  CAS  PubMed  Google Scholar 

  9. Tong, I.T., Liao, H.H., Cameron, D.: 1,3-Propanediol production by Escherichia coli expressing genes from the Klebsiella pneumoniae dha regulon. Appl. Environ. Microbiol. 57, 3541–3546 (1991)

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Khosla, C., Bailey, J.E.: Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinant Escherichia coli. Nature 331, 633–635 (1988)

    Article  CAS  PubMed  Google Scholar 

  11. Aristidou, A.A., San, K.Y., Bennett, G.N.: Modification of central metabolic pathway in Escherichia coli to reduce acetate accumulation by heterologous expression of the Bacillus subtilis acetolactate synthase gene. Biotechnol. Bioeng. 44, 944–951 (1994)

    Article  CAS  PubMed  Google Scholar 

  12. Dube, D.H., Bertozzi, C.R.: Metabolic oligosaccharide engineering as a tool for glycobiology. Curr. Opin. Chem. Biol. 7, 616–625 (2003)

    Article  CAS  PubMed  Google Scholar 

  13. Campbell, C.T., Sampathkumar, S.-G., Weier, C., Yarema, K.J.: Metabolic oligosaccharide engineering: perspectives, applications, and future directions. Mol. Biosyst. 3, 187–194 (2007)

    Article  CAS  PubMed  Google Scholar 

  14. Aich, U., Yarema, K.J.: Non-natural sugar analogues: chemical probes for metabolic oligosaccharide engineering. In: Fraser-Reid, B.O., Tatsuta, K., Thiem, J. (eds.) Glycoscience, pp. 2133–2190, Springer-Verlag Berlin Heidelberg (2008)

  15. Du, J., Meledeo, M.A., Wang, Z., Khanna, H.S., Paruchuri, V.D.P., Yarema, K.J.: Metabolic glycoengineering: sialic acid and beyond. Glycobiology 19, 1382–1401 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Wang, Z., Du, J., Che, P.-L., Meledeo, M.A., Yarema, K.J.: Hexosamine analogs: from metabolic glycoengineering to drug discovery. Curr. Opin. Chem. Biol. 13, 565–572 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Viswanathan, K., Lawrence, S., Hinderlich, S., Yarema, K.J., Lee, Y.C., Betenbaugh, M.: Engineering sialic acid synthetic ability into insect cells: identifying metabolic bottlenecks and devising strategies to overcome them. Biochemistry 42, 15215–15225 (2003)

    Article  CAS  PubMed  Google Scholar 

  18. Ringenberg, M.A., Steenbergen, S.M., Vimr, E.R.: The first committed step in the biosynthesis of sialic acid by Escherichia coli K1 does not involve a phosphorylated N-acetylmannosamine intermediate. Mol. Microbiol. 50, 961–975 (2003)

    Article  CAS  PubMed  Google Scholar 

  19. Kayser, H., Zeitler, R., Kannicht, C., Grunow, D., Nuck, R., Reutter, W.: Biosynthesis of a nonphysiological sialic acid in different rat organs, using N-propanoyl-D-hexosamines as precursors. J. Biol. Chem. 267, 16934–16938 (1992)

    CAS  PubMed  Google Scholar 

  20. Kayser, H., Geilen, C.C., Paul, C., Zeitler, R., Reutter, W.: Incorporation of N-acyl-2-amino-2-deoxy-hexoses into glycosphingolipids of the pheochromocytoma cell line PC 12. FEBS Lett. 301, 137–140 (1992)

    Article  CAS  PubMed  Google Scholar 

  21. Kiick, K.L., Tirrell, D.A.: Protein engineering by in vivo incorporation of non-natural amino acids: control of incorporation of methionine analogues by methionyl-tRNA synthetase. Tetrahedron 56, 9487–9493 (2000)

    Article  CAS  Google Scholar 

  22. Link, A.J., Mock, M.L., Tirrell, D.A.: Non-canonical amino acids in protein engineering. Curr. Opin. Biotechnol. 14, 603–609 (2003)

    Article  CAS  PubMed  Google Scholar 

  23. Langer, R., Tirrell, D.A.: Designing materials for biology and medicine. Nature 428, 487–492 (2004)

    Article  CAS  PubMed  Google Scholar 

  24. Hohsaka, T., Sisido, M.: Incorporation of non-natural amino acids into proteins. Curr. Opin. Chem. Biol. 6, 809–815 (2002)

    Article  CAS  PubMed  Google Scholar 

  25. Chin, J.W., Martin, A.B..., King, D.S., Wang, L., Schultz, P.G.: Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 99, 11020–11024 (2002)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Chin, J.W., Santoro, S.W., Martin, A.B..., King, D.S., Wang, L., Schultz, P.G.: Addition of p-azido-l-phenylalanine to the genetic code of Escherichia coli. J. Am. Chem. Soc. 124, 9026–9027 (2002)

    Article  CAS  PubMed  Google Scholar 

  27. Wang, L., Xie, J., Schultz, P.G.: Expanding the genetic code. Annu. Rev. Biophys. Biomol. Struct. 35, 225–249 (2006)

    Article  PubMed  CAS  Google Scholar 

  28. Keppler, O.T., Horstkorte, R., Pawlita, M., Schmidt, C., Reutter, W.: Biochemical engineering of the N-acyl side chain of sialic acid: biological implications. Glycobiology 11, 11R–18R (2001)

    Article  CAS  PubMed  Google Scholar 

  29. Yarema, K.J., Mahal, L.K., Bruehl, R.E., Rodriguez, E.C., Bertozzi, C.R.: Metabolic delivery of ketone groups to sialic acid residues. Application to cell surface glycoform engineering. J. Biol. Chem. 273, 31168–31179 (1998)

    Article  CAS  PubMed  Google Scholar 

  30. Roth, J.: Cellular sialoglyconjugates: a histochemical perspective. Histochem. J. 25, 687–710 (1993)

    CAS  PubMed  Google Scholar 

  31. Tanner, M.E.: The enzymes of sialic acid biosynthesis. Bioorg. Chem. 33, 216–228 (2005)

    Article  CAS  PubMed  Google Scholar 

  32. Schwartz, E.L., Hadfield, A.F., Brown, A.E., Sartorelli, A.C.: Modification of sialic acid metabolism of murine erythroleukemia cells by analogs of N-acetylmannosamine. Biochim. Biophys. Acta 762, 489–497 (1983)

    Article  CAS  PubMed  Google Scholar 

  33. Hadfield, A.F., Mella, S.L., Sartorelli, A.C.: N-Acetyl-D-mannosamine analogues as potential inhibitors of sialic acid biosynthesis. J. Pharm. Sci. 72, 748–751 (1983)

    Article  CAS  PubMed  Google Scholar 

  34. Sarkar, A.K., Fritz, T.A., Taylor, W.H., Esko, J.D.: Disaccharide uptake and priming in animal cells: inhibition of sialyl Lewis X by acetylated Gal b1,4GalcNAc b-onaphthalenemethanol. Proc. Natl. Acad. Sci. U. S. A. 92, 3323–3327 (1995)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Fuster, M.M., Brown, J.R., Wang, L., Esko, J.D.: A disaccharide precursor of sialyl Lewis X inhibits metastatic potential of tumor cells. Cancer Res. 63, 2775–2781 (2003)

    CAS  PubMed  Google Scholar 

  36. Mahal, L.K., Charter, N.W., Angata, K., Fukuda, M., Koshland Jr., D.E., Bertozzi, C.R.: A small-molecule modulator of poly-a2,8-sialic acid expression on cultured neurons and tumor cells. Science 294, 380–382 (2001)

    Article  CAS  PubMed  Google Scholar 

  37. Horstkorte, R., Mühlenhoff, M., Reutter, W., Nöhring, S., Zimmermann-Kordmann, M., Gerardy-Schahn, R.: Selective inhibition of polysialyltransferase ST8SiaII by unnatural sialic acids. Exp. Cell Res. 298, 268–274 (2004)

    Article  CAS  PubMed  Google Scholar 

  38. Grünholz, H.J., Harms, E., Opetz, M., Reutter, W., Cerný, M.: Inhibition of in vitro biosynthesis of N-acetylneuraminic acid by N-acyl- and N-alkyl-2-amino-2-deoxyhexoses. Carbohydr. Res. 96, 259–270 (1981)

    Article  PubMed  Google Scholar 

  39. Gross, H.J., Brossmer, R.: Enzymatic introduction of a fluorescent sialic acid into oligosaccharide chains of glycoproteins. Eur. J. Biochem. 177, 583–589 (1988)

    Article  CAS  PubMed  Google Scholar 

  40. Gross, H.J., Rose, U., Krause, J.M., Paulson, J.C., Schmid, K., Feeny, R.E., Brossmer, R.: Transfer of synthetic sialic acid analogues to N- and O-linked glycoprotein glycans using four different mammalian sialyltransferases. Biochemistry 28, 7386–7392 (1989)

    Article  CAS  PubMed  Google Scholar 

  41. Brossmer, R., Gross, H.J.: Sialic acid analogs and application for preparation of neoglycoconjugates. Methods Enzymol. 247, 153–176 (1994)

    Article  CAS  PubMed  Google Scholar 

  42. Kayser, H., Geilen, C.C., Paul, C., Zeitler, R., Reutter, W.: New amino sugar analogues are incorporated at different rates into glycoproteins of mouse organs. Experientia 49, 885–887 (1993)

    Article  CAS  PubMed  Google Scholar 

  43. Collins, B.E., Fralich, T.J., Itonori, S., Ichikawa, Y., Schnaar, R.L.: Conversion of cellular sialic acid expression from N-acetyl- to N-glycolylneuraminic acid using a synthetic precursor, N-glycolylmannosamine pentaacetate: inhibition of myelin-associated glycoprotein binding to neural cells. Glycobiology 10, 11–20 (2000)

    Article  CAS  PubMed  Google Scholar 

  44. Sampathkumar, S.-G., Li, A.V., Jones, M.B., Sun, Z., Yarema, K.J.: Metabolic installation of thiols into sialic acid modulates adhesion and stem cell biology. Nat. Chem. Biol. 2, 149–152 (2006)

    Article  CAS  PubMed  Google Scholar 

  45. Saxon, E., Bertozzi, C.R.: Cell surface engineering by a modified Staudinger reaction. Science 287, 2007–2010 (2000)

    Article  CAS  PubMed  Google Scholar 

  46. Mahal, L.K., Yarema, K.J., Bertozzi, C.R.: Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science 276, 1125–1128 (1997)

    Article  CAS  PubMed  Google Scholar 

  47. Han, S., Collins, B.E., Bengtson, P., Paulson, J.C.: Homo-multimeric complexes of CD22 revealed by in situ photoaffinity protein-glycan crosslinking. Nat. Chem. Biol. 1, 93–97 (2005)

    Article  CAS  PubMed  Google Scholar 

  48. Tanaka, Y., Kohler, J.J.: Photoactivatable crosslinking sugars for capturing glycoprotein interactions. J. Am. Chem. Soc. 130, 3278–3279 (2008)

    Article  CAS  PubMed  Google Scholar 

  49. Dafik, L., d’Alarcao, M., Kumar, K.: Fluorination of mammalian cell surfaces via the sialic acid biosynthetic pathway Bioorg. Med. Chem. Lett. 18, 5945–5947 (2008)

    Article  CAS  Google Scholar 

  50. Dafik, L., d’Alarcao, M., Kumar, K.: Modulation of cellular adhesion by glycoengineering. J. Med. Chem. 53, 4277–4284 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Mahal, L.K., Yarema, K.J., Lemieux, G.A., Bertozzi, C.R.: Chemical approaches to glycobiology: engineering cell surface sialic acids for tumor targeting. In: Inoue, Y., Lee, Y.C., Troy II, F.A. (eds.) Sialobiology and other novel forms of glycosylation, pp. 273–280. Gakushin Publishing Company, Osaka (1999)

    Google Scholar 

  52. Lemieux, G.A., Yarema, K.J., Jacobs, C.L., Bertozzi, C.R.: Exploiting differences in sialoside expression for selective targeting of MRI contrast reagents. J. Am. Chem. Soc. 121, 4278–4279 (1999)

    Article  CAS  Google Scholar 

  53. Andre, G., Kulakauskas, S., Chapot-Chartier, M.P., Navet, B., Deghorain, M., Bernard, E., Hols, P., Dufrêne, Y.F.: Imaging the nanoscale organization of peptidoglycan in living Lactococcus lactis cells. Nat. Commun. 1, 1–8 (2010)

    Article  PubMed Central  CAS  Google Scholar 

  54. Swoboda, J.G., Campbell, J., Meredith, T.C., Walker, S.: Wall teichoic acid function, biosynthesis, and inhibition. ChemBioChem 11, 35–45 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Boulnois, G.J., Jann, K.: Bacterial polysaccharide capsule synthesis, export and evolution of structural diversity. Mol. Microbiol. 3, 1819–1823 (1989)

    Article  CAS  PubMed  Google Scholar 

  56. Jann, B., Jann, K.: Structure and biosynthesis of the capsular antigens of Escherichia coli. Curr. Top. Microbiol. Immunol. 150, 19–42 (1990)

    CAS  PubMed  Google Scholar 

  57. Nizet, V., Esko, J.D.: Bacterial and Viral Infections, Essentials of Glycobiology, 2nd edition. Cold Spring Harbor Laboratory Chapter 39, http://www.ncbi.nlm.nih.gov/books/NBK1952/ (2009)

  58. Schilling, B., Goon, S., Samuels, N.M., Gaucher, S.P., Leary, J.A., Bertozzi, C.R., Gibson, B.W.: Biosynthesis of sialylated lipooligosaccharides in Haemophilus ducreyi is dependent on exogenous sialic acid and not mannosamine. Incorporation studies using N-acylmannosamine analogues, N-Glycolylneuraminic acid, and 13C-labeled N-acetylneuraminic acid. Biochemistry 40, 12666–12677 (2001)

    Article  CAS  PubMed  Google Scholar 

  59. Plumbridge, J., Vimr, E.: Convergent pathways for utilization of the amino sugars N-acetylglucosamine, N-acetylmannosamine, and N-acetylneuraminic acid by Escherichia coli. J. Bacteriol. 181, 47–54 (1999)

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Vimr, E., Lichtensteiger, C., Steenbergen, S.: Sialic acid metabolism’s dual function in Haemophilus influenzae. Mol. Microbiol. 36, 1113–1123 (2000)

    Article  CAS  PubMed  Google Scholar 

  61. Goon, S., Bertozzi, C.R.: Metabolic substrate engineering as a tool for glycobiology. In: Wang, P.G., Bertozzi, C.R. (eds.) Glycochemistry. Principles, synthesis, and applications, pp. 641–674. Marcel Dekker, Inc, New York (2001)

    Chapter  Google Scholar 

  62. Goon, S., Bertozzi, C.R.: Metabolic substrate engineering as a tool for glycobiology. J. Carbohydr. Chem. 21, 943–977 (2002)

    Article  CAS  Google Scholar 

  63. Goon, S., Schilling, B., Tullius, M.V., Gibson, B.W., Bertozzi, C.R.: Metabolic incorporation of unnatural sialic acids into Haemophilus ducreyi lipooligosaccharides. Proc. Natl. Acad. Sci. U. S. A. 18, 3089–3094 (2003)

    Article  CAS  Google Scholar 

  64. Kim, E.J., Sampathkumar, S.-G., Jones, M.B., Rhee, J.K., Baskaran, G., Yarema, K.J.: Characterization of the metabolic flux and apoptotic effects of O-hydroxyl- and N-acetylmannosamine (ManNAc) analogs in Jurkat (human T-lymphoma-derived) cells. J. Biol. Chem. 279, 18342–18352 (2004)

    Article  CAS  PubMed  Google Scholar 

  65. Almaraz, R.T., Aich, U., Khanna, H.S., Tan, E., Bhattacharya, R., Shah, S., Yarema, K.J.: Metabolic oligosaccharide engineering with N-acyl functionalized ManNAc analogues: cytotoxicity, metabolic flux, and glycan-display considerations. Biotechnol. Bioeng. 109, 992–1006 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Almaraz, R.T., Mathew, M.P., Tan, E., Yarema, K.J.: Metabolic oligosaccharide engineering: implications for selectin-mediated adhesion and leukocyte extravasation. Ann. Biomed. Eng. 40, 806–815 (2012)

    Article  PubMed Central  PubMed  Google Scholar 

  67. Sarkar, A.K., Rostand, K.S., Jain, R.K., Matta, K.L., Esko, J.D.: Fucosylation of disaccharide precursors of sialyl Lewis X inhibit selectin-mediated cell adhesion. J. Biol. Chem. 272, 25608–25616 (1997)

    Article  CAS  PubMed  Google Scholar 

  68. Jones, M.B., Teng, H., Rhee, J.K., Baskaran, G., Lahar, N., Yarema, K.J.: Characterization of the cellular uptake and metabolic conversion of acetylated N-acetylmannosamine (ManNAc) analogues to sialic acids. Biotechnol. Bioeng. 85, 394–405 (2004)

    Article  CAS  PubMed  Google Scholar 

  69. Mathew, M.P., Tan, E., Shah, S., Bhattacharya, R., Meledeo, M.A., Huang, J., Espinoza, F.A., Yarema, K.J.: Extracellular and intracellular esterase processing of SCFA-hexosamine analogs: implications for metabolic glycoengineering and drug delivery. Bioorg. Med. Chem. Lett. 22, 6929–6933 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Antonczak, A.K., Simova, Z., Tippmann, E.M.: A critical examination of Escherichia coli esterase activity. J. Biol. Chem. 284, 28795–28800 (2010)

    Article  CAS  Google Scholar 

  71. Koenigs, M.B., Richardson, E.A., Dube, D.H.: Metabolic profiling of Helicobacter pylori glycosylation. Mol. Biosyst. 5, 909–912 (2009)

    Article  CAS  PubMed  Google Scholar 

  72. Jones, M.N.: Use of liposomes to deliver bactericides to bacterial biofilms. Methods Enzymol. 391, 211–228 (2005)

    Article  CAS  PubMed  Google Scholar 

  73. Forier, K., Raemdonck, K., De Smedt, S.C., Demeester, J., Coenye, T., Braeckmans, K.: Lipid and polymer nanoparticles for drug delivery to bacterial biofilms. J. Control. Release 190, 607–623 (2014)

    Article  CAS  PubMed  Google Scholar 

  74. Liu, T., Guo, Z., Yang, Q., Sad, S., Jennings, H.J.: Biochemical engineering of surface a2,8 polysialic acid for immunotargeting tumor cells. J. Biol. Chem. 275, 32832–32836 (2000)

    Article  CAS  PubMed  Google Scholar 

  75. Pan, Y., Chefalo, P., Nagy, N., Harding, C., Guo, Z.: Synthesis and immunological properties of N-modified GM3 antigens as therapeutic cancer vaccines. J. Med. Chem. 48, 875–883 (2005)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Chefalo, P., Pan, Y.-B., Nagy, N., Harding, C., Guo, Z.-W.: Preparation and immunological studies of protein conjugates of N-acylneuraminic acids. Glycoconj. J. 20, 407–414 (2004)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Chefalo, P., Pan, Y., Nagy, N., Guo, Z., Harding, C.V.: Efficient metabolic engineering of GM3 on tumor cells by N-phenylacetyl-D-mannosamine. Biochemistry 45, 3733–3739 (2006)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Qiu, L., Gong, X., Wang, Q., Li, J., Hu, H., Wu, Q., Zhang, J., Guo, Z.: Combining synthetic carbohydrate vaccines with cancer cell glycoengineering for effective cancer immunotherapy. Cancer Immunol. Immunother. 61, 2045–2054 (2012)

    Article  CAS  PubMed  Google Scholar 

  79. Lemieux, G.A., Bertozzi, C.R.: Modulating cell surface immunoreactivity by metabolic induction of unnatural carbohydrate antigens. Chem. Biol. 8, 265–275 (2001)

    Article  CAS  PubMed  Google Scholar 

  80. Sugerman, D.T.: JAMA patient page. Antibiotic resistance. J. Am. Med. Assoc. 310, 2212 (2013)

    Article  CAS  Google Scholar 

  81. Aisenberg, G., Rolston, K.V., Safdar, A.: Bacteremia caused by Achromobacter and Alcaligenes species in 46 patients with cancer (1989–2003). Cancer 101, 2134–2140 (2004)

    Article  PubMed  Google Scholar 

  82. Fishman, J.A., Greenwald, M.A., Kuehnert, M.J.: Enhancing transplant safety: a new era in the microbiologic evaluation of organ donors? Am. J. Transplant. 7, 2652–2654 (2007)

    Article  CAS  PubMed  Google Scholar 

  83. Cho, I., Blaser, M.J.: The Human Microbiome: at the interface of health and disease. Nat. Rev. Genet. 13, 260–270 (2012)

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Dethlefsen, L., Relman, D.A.: Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl. Acad. Sci. U. S. A. 108, 4554–4561 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Relman, D.A.: Restoration of the gut microbial habitat as a disease therapy. Nat. Biotechnol. 31, 35–37 (2013)

    Article  CAS  PubMed  Google Scholar 

  86. Blaser, M.: Antibiotic overuse: stop the killing of beneficial bacteria. Nature 476, 393–394 (2011)

    Article  CAS  PubMed  Google Scholar 

  87. Jacobs, C.L., Goon, S., Yarema, K.J., Hinderlich, S., Hang, H.C., Chai, D.H., Bertozzi, C.R.: Substrate specificity of the sialic acid biosynthetic pathway. Biochemistry 40, 12864–12874 (2001)

    Article  CAS  PubMed  Google Scholar 

  88. Dumont, A., Malleron, A., Awwad, M., Dukan, S., Vauzeilles, B.: Click-mediated labeling of bacterial membranes through metabolic modification of the lipopolysaccharide inner core. Angew. Chem. Int. Ed. 51, 3143–3146 (2012)

    Article  CAS  Google Scholar 

  89. Sadamoto, R., Niikura, K., Sears, P.S., Liu, H., Wong, C.-H., Suksomcheep, A., Tomita, F., Monde, K., Nishimura, S.-I.: Cell-wall engineering of living bacteria. J. Am. Chem. Soc. 124, 9018–9019 (2002)

    Article  CAS  PubMed  Google Scholar 

  90. Sadamoto, R., Niikura, K., Ueda, T., Monde, K., Fukuhara, N., Nishimura, S.-I.: Control of bacteria adhesion by cell-wall engineering. J. Am. Chem. Soc. 126, 3755–3761 (2004)

    Article  CAS  PubMed  Google Scholar 

  91. Sadamoto, R., Nishimura, S.-I.: Chemo-biological approach to modification of the bacterial cell wall. In: Yarema, K. (ed.) Handbook of carbohydrate engineering, pp. 495–506. CRC Press/Taylor & Francis, Boca Raton (2005)

    Chapter  Google Scholar 

  92. Ueda, T., Feng, F., Sadamoto, R., Niikura, K., Monde, K., Nishimura, S.-I.: Synthesis of 4-fluorinated UDP-MurNAc pentapeptide as an inhibitor of bacterial growth. Org. Lett. 6, 1753–1756 (2004)

    Article  CAS  PubMed  Google Scholar 

  93. Wu, C.H., Mulchandani, A., Chen, W.: Versatile microbial surface-display for environmental remediation and biofuels production. Trends Microbiol. 16, 181–188 (2008)

    Article  CAS  PubMed  Google Scholar 

  94. Boudreau, M.A., Fisher, J.F., Mobashery, S.: Messenger functions of the bacterial cell wall-derived muropeptides. Biochemistry 51, 2974–2990 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Lee, M., Hesek, D., Shah, I.M., Oliver, A.G., Dworkin, J., Mobashery, S.: Synthetic peptidoglycan motifs for germination of bacterial spores. ChemBioChem 11, 2525–2529 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Memmel, E., Homann, A., Oelschlaeger, T.A., Seibel, J.: Metabolic glycoengineering of Staphylococcus aureus reduces its adherence to human T24 bladder carcinoma cells. Chem. Commun. (Camb.) 49, 7301–7303 (2013)

    Article  CAS  Google Scholar 

  97. Vimr, E., Steenbergen, S., Cieslewicz, M.: Biosynthesis of the polysialic acid capsule in Escherichia coli K1. J. Ind. Microbiol. 352–360, 352–360 (1995)

    Article  Google Scholar 

  98. Jennings, H.J.: Chemically modified capsular polysaccharides as vaccines. Adv. Exp. Med. Biol. 228, 495–550 (1988)

    Article  CAS  PubMed  Google Scholar 

  99. Hayrinen, J., Jennings, H., Raff, H.V., Rougon, G., Hanai, N., Gerardy-Schahn, R., Finne, J.: Antibodies to polysialic acid and its N-propyl derivative: binding properties and interaction with human embryonal brain glycopeptides. J. Infect. Dis. 171, 1481–1490 (1995)

    Article  CAS  PubMed  Google Scholar 

  100. Emmadi, M., Kulkarni, S.S.: Recent advances in synthesis of bacterial rare sugar building blocks and their applications. Nat. Prod. Rep. 31, 870–879 (2014)

    Article  CAS  PubMed  Google Scholar 

  101. Xu, D.-Q., Cisar, J.O., Ambulos Jr., N., Burr, D.H., Kopecko, D.J.: Molecular cloning and characterization of genes for Shigella sonnei form I O polysaccharide: Proposed biosynthetic pathway and stable expression in a live salmonella vaccine vector. Infect. Immun. 70, 4414–4423 (2002)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Stimson, E., Virji, M., Makepeace, K., Dell, A., Morris, H.R., Payne, G., Saunders, J.R., Jennings, M.P., Barker, S., Panico, M., Blench, I., Moxon, E.R.: Meningococcal pilin: a glycoprotein substituted with digalactosyl 2,4-diacetamido-2,4,6-trideoxyhexose. Mol. Microbiol. 17, 1201–1214 (1995)

    Article  CAS  PubMed  Google Scholar 

  103. Castric, P., Cassels, F.J., Carlson, R.W.: Structural characterization of the Pseudomonas aeruginosa 1244 pilin glycan. J. Biol. Chem. 276, 26479–26485 (2001)

    Article  CAS  PubMed  Google Scholar 

  104. Pinta, E., Duda, K.A., Hanuszkiewicz, A., Kaczyński, Z., Lindner, B., Miller, W.L., Hyytiäinen, H., Vogel, C., Borowski, S., Kasperkiewicz, K., Lam, J.S., Radziejewska-Lebrecht, J., Skurnik, M., Holst, O.: Identification and role of a 6-deoxy-4-keto-hexosamine in the lipopolysaccharide outer core of Yersinia enterocolitica serotype O:3. Chemistry 15, 9747–9754 (2009)

    Article  CAS  PubMed  Google Scholar 

  105. Terpe, K.: Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 72, 211–222 (2006)

    Article  CAS  PubMed  Google Scholar 

  106. Yin, J., Li, G., Ren, X., Herrler, G.: Select what you need: a comparative evaluation of the advantages and limitations of frequently used expression systems for foreign genes. J. Biotechnol. 127, 335–347 (2007)

    Article  CAS  PubMed  Google Scholar 

  107. Cole, P.: Chaperone-assisted protein expression. Structure 4, 239–242 (1996)

    Article  CAS  PubMed  Google Scholar 

  108. Khow, O., Suntrarachun, S.: Strategies for production of active eukaryotic proteins in bacterial expression system. Asian Pac. J. Trop. Biomed. 2, 159–162 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Wormald, M.R., Dwek, R.A.: Glycoproteins: glycan presentation and protein-fold stability. Structure 7, R155–R160 (1999)

    Article  CAS  PubMed  Google Scholar 

  110. O’Connor, S.E., Imperiali, B.: Modulation of protein structure and function by asparagine-linked glycosylation. Chem. Biol. 3, 803–812 (1996)

    Article  PubMed  Google Scholar 

  111. Otvos, L., Krivulka, G.R., Urge, L., Szendrei, G.I., Nagy, L., Xiang, Z.Q., Ertl, H.C.J.: Comparison of the effects of amino acid substitutions and b-N-vs. a-O-glycosylation on the T-cell stimulatory activity and conformation of an epitope on the rabies virus glycoprotein. Biochim. Biophys. Acta 1267, 55–64 (1995)

    Article  PubMed  Google Scholar 

  112. Steen, P.V., Rudd, P.M., Dwek, R.A., Opdenakker, G.: Concepts and principles of O-linked glycosylation. Crit. Rev. Biochem. Mol. Biol. 33, 151–208 (1998)

    Article  PubMed  Google Scholar 

  113. Imperiali, B., Rickert, K.W.: Conformational implications of asparagine-linked glycosylation. Proc. Natl. Acad. Sci. U. S. A. 92, 97–101 (1995)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Imperiali, B., O’Connor, S.E.: Effect of N-linked glycosylation on glycopeptide and glycoprotein structure. Curr. Opin. Chem. Biol. 3, 643–649 (1999)

    Article  CAS  PubMed  Google Scholar 

  115. Kern, G., Kern, D., Jaenicke, R., Seckler, R.: Kinetics of folding and association of differently glycosylated variants of invertase from Saccharomyces cerevisiae. Protein Sci. 2, 1862–1868 (1993)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Li, F., Erickson, H.P., James, J.A., Moore, K.L., Cummings, R.D., McEver, R.P.: Visualization of P-selectin glycoprotein ligand-1 as a highly extended molecule and mapping of protein epitopes for monoclonal antibodies. J. Biol. Chem. 271, 6342–6348 (1996)

    Article  CAS  PubMed  Google Scholar 

  117. Hooper, L.V., Manzella, S., Baenziger, J.: From legumes to leukocytes: biological roles for sulfated carbohydrates. FASEB J. 10, 1137–1146 (1996)

    CAS  PubMed  Google Scholar 

  118. Drickamer, K.: Clearing up glycoprotein hormones. Cell 67, 1029–1032 (1991)

    Article  CAS  PubMed  Google Scholar 

  119. Schäffer, C., Graninger, M., Messner, P.: Prokaryotic glycosylation. Proteomics 1, 248–261 (2001)

    Article  PubMed  Google Scholar 

  120. Benz, I., Schmidt, M.A.: Never say never again: protein glycosylation in pathogenic bacteria. Mol. Microbiol. 45, 267–276 (2002)

    Article  CAS  PubMed  Google Scholar 

  121. Power, P., Jennings, M.: The genetics of glycosylation in Gram-negative bacteria. FEMS Microbiol. Lett. 218, 211–222 (2003)

    Article  CAS  PubMed  Google Scholar 

  122. Weerapana, E., Imperiali, B.: Asparagine-linked protein glycosylation: from eukaryotic to prokaryotic systems. Glycobiology 16, 91R–101R (2006)

    Article  CAS  PubMed  Google Scholar 

  123. Abu-Qarn, M., Eichler, J., Sharon, N.: Not just for eukarya anymore: protein glycosylation in bacteria and archaea. Curr. Opin. Struct. Biol. 18, 544–550 (2008)

    Article  CAS  PubMed  Google Scholar 

  124. Nothaft, H., Szymanski, C.M.: Protein glycosylation in bacteria: sweeter than ever. Nat. Rev. Microbiol. 8, 765–778 (2010)

    Article  CAS  PubMed  Google Scholar 

  125. Wacker, M., Linton, D., Hitchen, P.G., Nita-Lazar, M., Haslam, S.M., North, S.J., Panico, M., Morris, H.R., Dell, A., Wren, B.W., Aebi, M.: N-Linked glycosylation in Campylobacter jejuni and it functional transfer into E. coli. Science 298, 1790–1793 (2002)

    Article  CAS  PubMed  Google Scholar 

  126. Linton, D., Dorrell, N., Hitchen, P.G., Amber, S., Karlyshev, A.V., Morris, H.R., Dell, A., Valvano, M.A., Aebi, M., Wren, B.W.: Functional analysis of the Campylobacter jejuni N-linked protein glycosylation pathway. Mol. Microbiol. 55, 1695–1703 (2005)

    Article  CAS  PubMed  Google Scholar 

  127. Gross, J., Grass, S., Davis, A.E., Gilmore-Erdmann, P., Townsend, R.R., Geme III, J.W.S.: The Haemophilus influenzae HMW1 adhesin is a glycoprotein with an unusual N-linked carbohydrate modification. J. Biol. Chem. 283, 26010–26015 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  128. St Gene III, J.W.: The HMW1 adhesin of nontypeable Haemophilus influenzae recognizes sialylated glycoprotein receptors on cultured human epithelial cells. Infect. Immun. 62, 3881–3889 (1994)

    Google Scholar 

  129. Logan, S.M.: Flagellar glycosylation—a new component of the motility repertoire? Microbiology 152, 1249–1262 (2006)

    Article  CAS  PubMed  Google Scholar 

  130. Ng, S.Y.M., Chaban, B., Jarrell, K.F.: Archaeal flagella, bacterial flagella and type IV pili: a comparison of genes and posttranslational modifications. J. Mol. Microbiol. Biotechnol. 11, 167–191 (2006)

    Article  CAS  PubMed  Google Scholar 

  131. Cardinale, J., Clark, V.: Expression of AniA, the major anaerobically induced outer membrane protein of Neisseria gonorrhoeae, provides protection against killing by normal human sera. Infect. Immun. 68, 4368–4369 (2000)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  132. Ku, S., Schulz, B., Power, P., Jennings, M.: The pilin O-glycosylation pathway of pathogenic neisseria is a general system that glycosylates AniA, an outer membrane nitrite reductase. Biochem. Biophys. Res. Commun. 378, 84–89 (2009)

    Article  CAS  PubMed  Google Scholar 

  133. Li, H., Sethurama, N., Stadheim, T.A., Zha, D., Prinz, B., Ballew, N., Bobrowicz, P., Choi, B.K., Cook, W.J., Cukan, M.: Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat. Biotechnol. 24, 210–215 (2006)

    Article  CAS  PubMed  Google Scholar 

  134. Nimmerjahn, F., Ravetch, J.V.: Antibodies, Fc receptors and cancer. Curr. Opin. Immunol. 19, 239–245 (2007)

    Article  CAS  PubMed  Google Scholar 

  135. Anthony, R.M., Nimmerjahn, F., Ashline, D.J., Reinhold, V.N., Paulson, J.C., Ravetch, J.V.: Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science 320, 373–376 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  136. Cosgrave, E.F., Struwe, W.B., Hayes, J.M., Harvey, D.J., Wormald, M.R., Rudd, P.M.: N-linked glycan structures of the human Fcγ receptors produced in NS0 cells. J. Proteome Res. 12, 3721–3737 (2013)

    Article  CAS  PubMed  Google Scholar 

  137. Stephanopoulos, G.: Metabolic fluxes and metabolic engineering. Metabol. Eng. 1, 1–11 (1999)

    Article  CAS  Google Scholar 

  138. Weijers, C.A.G.M., Franssen, M.C.R., Visser, G.M.: Glycosyltransferase-catalyzed synthesis of bioactive oligosaccharides. Biotechnol. Adv. 26, 436–456 (2008)

    Article  CAS  PubMed  Google Scholar 

  139. Hanson, S., Best, M., Bryan, M.C., Wong, C.H.: Chemoenzymatic synthesis of oligosaccharides and glycoproteins. Trends Biochem. Sci. 29, 656–663 (2004)

    Article  CAS  PubMed  Google Scholar 

  140. Ichikawa, Y., Shen, G.J., Wong, C.H.: Enzyme-catalyzed synthesis of sialyl oligosaccharide with in situ regeneration of CMP-sialic acid. J. Am. Chem. Soc. 113, 4698–4700 (1991)

    Article  CAS  Google Scholar 

  141. Nishimura, S.-I., Yamada, K.: Transfer of ganglioside GM3 oligosaccharide from a water soluble polymer to ceramide by ceramide glycanase. A novel approach for the chemical-enzymatic synthesis of glycosphingolipids. J. Am. Chem. Soc. 119, 10555–10556 (1997)

    Article  CAS  Google Scholar 

  142. Wong, C.H., Haynie, S.L., Whitesides, G.M.: Enzyme-catalyzed synthesis of N-acetyllactosamine with in situ regeneration of uridine 5-diphosphate glucose and uridine 5′-diphosphate galactose. J. Org. Chem. 47, 5416–5418 (1982)

    Article  CAS  Google Scholar 

  143. Koeller, K.M., Wong, C.H.: Complex carbohydrate synthesis tools for glycobiologists: enzyme-based approach and programmable one-pot strategies. Glycobiology 10, 1157–1169 (2000)

    Article  CAS  PubMed  Google Scholar 

  144. Plante, O.J., Palmacci, E.R., Seeberger, P.H.: Automated synthesis of polysaccharides. Methods Enzymol. 369, 235–248 (2003)

    Article  CAS  PubMed  Google Scholar 

  145. Seeberger, P.H., Werz, D.B.: Automated synthesis of oligosaccharides as a basis for drug discovery. Nat. Rev. Drug Discov. 4, 751–763 (2005)

    Article  CAS  PubMed  Google Scholar 

  146. Seeberger, P.H., Werz, D.B.: Synthesis and medical applications of oligosaccharides. Nature 446, 1046–1051 (2007)

    Article  CAS  PubMed  Google Scholar 

  147. Koizumi, S., Endo, T., Tabata, K., Ozaki, A.: Large-scale production of UDP-galactose and globotriose by coupling metabolically engineered bacteria. Nat. Biotechnol. 16, 847–850 (1998)

    Article  CAS  PubMed  Google Scholar 

  148. Endo, T., Koizumi, S., Tabata, K., Kakita, S., Ozaki, A.: Large-scale production of N-acetyllactosamine through bacterial coupling. Carbohydr. Res. 316, 179–183 (1999)

    Article  CAS  PubMed  Google Scholar 

  149. Koizumi, S., Tabata, K., Kakita, S., Ozaki, A.: Large-scale production of CMP-NeuAc and sialylated oligosaccharides through bacterial coupling. Appl. Microbiol. Biotechnol. 53, 257–261 (2000)

    Article  PubMed  Google Scholar 

  150. Koizumi, S., Endo, T., Tabata, K., Nagano, H., Ohnishi, J., Ozaki, A.: Large-scale production of GDP-Lewis X by bacterial coupling. J. Ind. Microbiol. Biotechnol. 25, 213–217 (2000)

    Article  CAS  Google Scholar 

  151. Woodyer, R.D., Johannes, T.W., Zhao, H.: Regeneration of cofactors for enzyme biocatalysis. In: Pandey, A., Webb, C., Soccol, C.R., Larroche, C.R. (eds.) Enzyme technology, pp. 83–101. Springer, Germany (2006)

    Google Scholar 

  152. Chen, X., Liu, Z., Zhang, J., Zhang, W., Kowal, P., Wang, P.G.: Reassembled biosynthetic pathway for large-scale carbohydrate synthesis: a-Gal epitope producing “superbug”. Chembiochem 3, 47–53 (2002)

    Article  CAS  PubMed  Google Scholar 

  153. Yarema, K.J., Bertozzi, C.R.: Chemical approaches to glycobiology and emerging carbohydrate-based therapeutic agents. Curr. Opin. Chem. Biol. 2, 49–61 (1998)

    Article  CAS  PubMed  Google Scholar 

  154. Dai, Y., Vaught, T.D., Boone, J., Chen, S.-H., Phelps, C.J., Ball, S., Monahan, J.A., Jobst, P.M., McCreath, K.J., Lamborn, A.E., Cowell-Lucero, J.L., Wells, K.D., Colman, A., Polejaeva, I.A., Ayares, D.L.: Targeted disruption of the a1,3-galactosyltransferase gene in cloned pigs. Nat. Biotechnol. 20, 251–255 (2002)

    Article  CAS  PubMed  Google Scholar 

  155. Chung, C.H., Mirakhur, B., Chan, E., Le, Q.-T., Berlin, J., Morse, M., Murphy, B.A., Satinover, S.M., Hosen, J., Mauro, D., Slebos, R.J., Zhou, Q., Gold, D., Hatley, T., Hicklin, D.J., Platts-Mills, T.A.E.: Cetuximab-induced anaphylaxis and IgE specific for galactose-α-1,3-galactose. New Eng. J. Med. 358, 1109–1117 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  156. Cabezas-Cruz, A., Valdés, J., de la Fuenteemail, J.: Cancer research meets tick vectors for infectious diseases. Lancet 14, 916–917 (2014)

    Article  PubMed  Google Scholar 

  157. Hang, H.C., Yu, C., Kato, D.L., Bertozzi, C.R.: A metabolic labeling approach toward proteomic analysis of mucin-type O-linked glycosylation. Proc. Natl. Acad. Sci. U. S. A. 100, 14846–14851 (2003)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  158. Vocadlo, D.J., Hang, H.C., Kim, E.-J., Hanover, J.A., Bertozzi, C.R.: A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proc. Natl. Acad. Sci. U. S. A. 100, 9116–9121 (2003)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  159. Rabuka, D., Hubbard, S.C., Laughlin, S.T., Argade, S.P., Bertozzi, C.R.: A chemical reporter strategy to probe glycoprotein fucosylation. J. Am. Chem. Soc. 128, 12078–12079 (2006)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  160. Sawa, M., Hsu, T.-L., Itoh, T., Sugiyama, M., Hanson, S.R., Vogt, P.K., Wong, C.-H.: Glycoproteomic probes for fluorescent imaging of fucosylated glycans in vivo. Proc. Natl. Acad. Sci. U. S. A. 103, 12371–12376 (2006)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding was obtained from the National Institutes of Health, NCI grant R01CA112314.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Yarema.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeui, C.T., Urias, E., Liu, L. et al. Metabolic glycoengineering bacteria for therapeutic, recombinant protein, and metabolite production applications. Glycoconj J 32, 425–441 (2015). https://doi.org/10.1007/s10719-015-9583-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-015-9583-9

Keywords

Navigation