Skip to main content

Advertisement

Log in

GM1 ganglioside and Alzheimer’s disease

  • Mini-Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Assembly and deposition of amyloid ß-protein (Aß) is an invariable and fundamental event in the pathological process of Alzheimer’s disease (AD). To decipher the AD pathogenesis and also to develop disease-modifying drugs for AD, clarification of the molecular mechanism underlying the Aß assembly into amyloid fibrils in the brain has been a crucial issue. GM1-ganglioside-bound Aß (GAß), with unique molecular characteristics such as having an altered conformation and the capability to accelerate Aß assembly, was discovered in an autopsied brain showing early pathological changes of AD in 1995. On the basis of these findings, it was hypothesized that GAß is an endogenous seed for amyloid fibril formation in the AD brain. A body of evidence that supports this GAß hypothesis has been growing over this past 20 years. In this article, seminal GAß studies that have been carried out to date, including recent ones using unique animal models, are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yanagisawa, K., Odaka, A., Suzuki, N., Ihara, Y.: GM1 ganglioside-bound amyloid ß-protein (Aß): a possible form of preamyloid in Alzheimer’s disease. Nat. Med. 1, 1062–1066 (1995)

    Article  CAS  PubMed  Google Scholar 

  2. Hayashi, H., Kimura, N., Yamaguchi, H., Hasegawa, K., Yokoseki, T., Shibata, M., Yamamoto, N., Michikawa, M., Yoshikawa, Y., Terao, K., Matsuzaki, K., Lemere, C.A., Selkoe, D.J., Naiki, H., Yanagisawa, K.: A seed for Alzheimer amyloid in the brain. J. Neurosci. 24(20), 4894–4902 (2004). doi:10.1523/JNEUROSCI. 0861-04.2004

    Article  CAS  PubMed  Google Scholar 

  3. Yanagisawa, K.: Role of gangliosides in Alzheimer’s disease. Biochim. Biophys. Acta 1768(8), 1943–1951 (2007)

    Article  CAS  PubMed  Google Scholar 

  4. Ariga, T., McDonald, M.P., Yu, R.K.: Role of ganglioside metabolism in the pathogenesis of Alzheimer’s disease- a review. J. Lipid Res. 49(6), 1157–1175 (2008). doi:10.1194/jlr. R800007-JLR200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Matsuzaki, K., Kato, K., Yanagisawa, K.: Aβ polymerization through interaction with membrane gangliosides. Biochim. Biophys. Acta 1801(8), 868–877 (2010). doi:10.1016/j.bbalip.2010.01.008

    Article  CAS  PubMed  Google Scholar 

  6. Knight, E.M., Williams, H.N., Stevens, A.C., Kim, S.H., Kottwitz, J.C., Morant, A.D., Steele, J.W., Klein, W.L., Yanagisawa, K., Boyd, R.E., Lockhart, D.J., Sjoberg, E.R., Ehrlich, M.E., Wustman, B.A., Gandy, S.: Evidence that small molecule enhancement of β-hexosaminidase activity corrects the behavioral phenotype in Dutch APP(E693Q) mice through reduction of ganglioside-bound Aβ. Mol. Psychiatry (2014). doi:10.1038/mp.2014.135

    Google Scholar 

  7. Hong, S., Ostaszewski, B.L., Yang, T., O’Malley, T.T., Jin, M., Yanagisawa, K., Li, S., Bartels, T., Selkoe, D.J.: Soluble Aβ oligomers are rapidly sequestered from brain ISF in vivo and bind GM1 ganglioside on cellular membranes. Neuron 82(2), 308–319 (2014). doi:10.1016/j.neuron.2014.02.027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Okabayashi, S., Shimozawa, N., Yasutomi, Y., Yanagisawa, K., Kimura, N.: Diabetes mellitus accelerates Aß pathology in brain accompanied by enhanced GAß generation in non-human primates. PLoS One (2015)

  9. McLaurin, J., Franklin, T., Fraser, P.E., Chakrabartty, A.: Structural transitions associated with the interaction of Alzheimer β-amyloid peptides with gangliosides. J. Biol. Chem. 273(8), 4506–4515 (1998)

    Article  CAS  PubMed  Google Scholar 

  10. Kakio, A., Nishimoto, S., Yanagisawa, K., Kozutsumi, Y., Matsuzaki, K.: Interactions of amyloid β-protein with various gangliosides in raft-like membranes: importance of GM1 ganglioside-bound form as an endogenous seed for Alzheimer amyloid. Biochemistry 41(23), 7385–7390 (2002). doi:10.1074/jbc.M100252200

    Article  CAS  PubMed  Google Scholar 

  11. Williamson, M.P., Suzuki, Y., Bourne, N.T., Asakura, T.: Binding of amyloid β-peptide to ganglioside micelles is dependent on histidine-13. Biochem. J. 397(3), 483–490 (2006). doi:10.1042/BJ20060293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Fezoui, Y., Teplow, D.B.: Kinetic studies of amyloid β-protein fibril assembly. Differential effects of alpha-helix stabilization. J. Biol. Chem. 277(40), 36948–36954 (2002). doi:10.1074/jbc.M204168200

    Article  CAS  PubMed  Google Scholar 

  13. Utsumi, M., Yamaguchi, Y., Sasakawa, H., Yamamoto, N., Yanagisawa, K., Kato, K.: Up-and-down topological mode of amyloid β-peptide lying on hydrophilic/hydrophobic interface of ganglioside clusters. Glycoconj. J. 26(8), 999–1006 (2009). doi:10.1007/s10719-008-9216-7

    Article  CAS  PubMed  Google Scholar 

  14. Yagi-Utsumi, M., Kameda, T., Yamaguchi, Y., Kato, K.: NMR characterization of the interactions between lyso-GM1 aqueous micelles and amyloid β. FEBS Lett. 584(4), 831–836 (2010). doi:10.1016/j.febslet.2010.01.005

    Article  CAS  PubMed  Google Scholar 

  15. Ikeda, K., Yamaguchi, T., Fukunaga, S., Hoshino, M., Matsuzaki, K.: Mechanism of amyloid β-protein aggregation mediated by GM1 ganglioside clusters. Biochemistry 50(29), 6433–6440 (2011). doi:10.1021/bi200771m

    Article  CAS  PubMed  Google Scholar 

  16. Hoshino, T., Mahmood, M.I., Mori, K., Matsuzaki, K.: Binding and aggregation mechanism of amyloid β-peptides onto the GM1 ganglioside-containing lipid membrane. J. Phys. Chem. B 117(27), 8085–8094 (2013). doi:10.1021/jp4029062

    Article  CAS  PubMed  Google Scholar 

  17. Yagi-Utsumi, M., Matsuo, K., Yanagisawa, K., Gekko, K., Kato, K.: Spectroscopic characterization of intermolecular interaction of amyloid β promoted on GM1 micelles. Int. J. Alzheimers Dis. 2011, 925073 (2010). doi: 10.4061/2011/925073

  18. Manna, M., Mukhopadhyay, C.: Binding, conformational transition and dimerization of amyloid-β peptide on GM1-containing ternary membrane: insights from molecular dynamics simulation. PLoS ONE 8(8), e71308 (2013). doi:10.1371/journal.pone.0071308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Kakio, A., Nishimoto, S.I., Yanagisawa, K., Kozutsumi, Y., Matsuzaki, K.: Cholesterol-dependent formation of GM1 ganglioside-bound amyloid β-protein, an endogenous seed for Alzheimer amyloid. J. Biol. Chem. 276(27), 24985–24990 (2001)

    Article  CAS  PubMed  Google Scholar 

  20. Yuyama, K., Yanagisawa, K.: Sphingomyelin accumulation provides a favorable milieu for GM1 ganglioside-induced assembly of amyloid ß-protein. Neurosci. Lett. 481(3), 168–172 (2010). doi:10.1016/j.neulet.2010.06.080

    Article  CAS  PubMed  Google Scholar 

  21. Mori, K., Mahmood, M.I., Neya, S., Matsuzaki, K., Hoshino, T.: Formation of GM1 ganglioside clusters on the lipid membrane containing sphingomyeline and cholesterol. J. Phys. Chem. B 116(17), 5111–5121 (2012). doi:10.1021/jp207881k

    Article  CAS  PubMed  Google Scholar 

  22. Fantini, J., Yahi, N., Garmy, N.: Cholesterol accelerates the binding of Alzheimer’s β-amyloid peptide to ganglioside GM1 through a universal hydrogen-bond-dependent sterol tuning of glycolipid conformation. Front. Physiol. 4, 120 (2013). doi:10.3389/fphys.2013.00120

    PubMed Central  PubMed  Google Scholar 

  23. Matsubara, T., Iijima, K., Yamamoto, N., Yanagisawa, K., Sato, T.: Density of GM1 in nanoclusters is a critical factor in the formation of a spherical assembly of amyloid β-protein on synaptic plasma membranes. Langmuir 29(7), 2258–2264 (2013). doi:10.1021/la3038999

    Article  CAS  PubMed  Google Scholar 

  24. Oikawa, N., Hatsuta, H., Murayama, S., Suzuki, A., Yanagisawa, K.: Influence of APOE genotype and the presence of Alzheimer’s pathology on synaptic membrane lipids of human brains. J. Neurosci. Res. 92(5), 641–650 (2014). doi:10.1002/jnr.23341

    Article  CAS  PubMed  Google Scholar 

  25. Cataldo, A.M., Peterhoff, C.M., Troncoso, J.C., Gomez-Isla, T., Hyman, B.T., Nixon, R.A.: Endocytic pathway abnormalites precede amyloid ß deposition in sporadic Alzheimer’s disease and Down syndrome: differential effects of APOE genotype and presenilin mutations. Am. J. Pathol. 157(1), 277–286 (2000)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Yuyama, K., Yamamoto, N., Yanagisawa, K.: Chloroquine-induced endocytic pathway abnormalities: cellular model of GM1 ganglioside-induced Aß fibrillogenesis in Alzheimer’s disease. FEBS Lett. 580(30), 6972–6976 (2006)

    Article  CAS  PubMed  Google Scholar 

  27. Yuyama, K., Yanagisawa, K.: Late endocytic dysfuntion as a putative cause of amyloid fibril formation in Alzheimer’s disease. J. Neurochem. 109(5), 1250–1260 (2009). doi:10.1111/j.1471-4159.2009.06046.x

    Article  CAS  PubMed  Google Scholar 

  28. Keilani, S., Lun, Y., Stevens, A.C., Williams, H.N., Sjoberg, E.R., Khanna, R., Valenzano, K.J., Checler, F., Buxbaum, J.D., Yanagisawa, K., Lockhart, D.J.: Wustman BA, Gandy S.: Lysosomal dysfunction in a mouse model of Sandhoff disease leads to accumulation of ganglioside-bound amyloid-β peptide. J. Neurosci. 32(15), 5223–5236 (2012). doi:10.1523/JNEUROSCI. 4860-11.2012

    Article  CAS  PubMed  Google Scholar 

  29. Oikawa, N., Matsubara, T., Fukuda, T., Yasumori, H., Hatsuta H., Murayama, S., Sato, T., Suzuki, A., Yanagisawa, K.: Imbalance in fatty-acid-chain length of gangliosides triggers Alzheimer amyloid deposition. PLoS One (2015)

  30. Jarrett, J.T., Lansbury, P.T.: Amyloid fibril formation requires a chemically discriminating nucleation event: studies of an amyloidogenic sequence from the bacterial protein OsmB. Biochemistry 31(49), 12345–12352 (1992)

    Article  CAS  PubMed  Google Scholar 

  31. Jarrett, J.T., Lansbury, P.T.: Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73(6), 1055–1058 (1993)

    Article  CAS  PubMed  Google Scholar 

  32. Esler, W.P., Stimson, E.R., Jennings, J.M., Vinters, H.V., Ghilardi, J.R., Lee, J.P., Mantyh, P.W., Maggio, J.E.: Alzheimer’s disease amyloid propagation by a template-dependent dock-lock mechanism. Biochemistry 39(21), 6288–6295 (2000)

    Article  CAS  PubMed  Google Scholar 

  33. Okada, T., Ikeda, K., Wakabayashi, M., Ogawa, M., Matsuzaki, K.: Formation of toxic Aβ(1–40) fibrils on GM1 ganglioside-containing membranes mimicking lipid rafts: polymorphisms in Aβ(1–40) fibrils. J. Mol. Biol. 382(4), 1066–1074 (2008). doi:10.1016/j.jmb.2008.07.072

    Article  CAS  PubMed  Google Scholar 

  34. Fukunaga, S., Ueno, H., Yamaguchi, T., Yano, Y., Hoshino, M., Matsuzaki, K.: GM1 cluster mediates formation of toxic Aβ fibrils by providing hydrophobic environments. Biochemistry 51(41), 8125–8131 (2012). doi:10.1021/bi300839u

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Funding of the Longevity Sciences (25–19) from the National Center for Geriatrics and Gerontology.

Conflict of interest

The author declare that he is free from conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuhiko Yanagisawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanagisawa, K. GM1 ganglioside and Alzheimer’s disease. Glycoconj J 32, 87–91 (2015). https://doi.org/10.1007/s10719-015-9579-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-015-9579-5

Keywords

Navigation