Skip to main content

Advertisement

Log in

Molecular structure of glycogen in diabetic liver

  • Short Communication
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Liver glycogen (involved in maintaining blood-sugar levels) is a hyperbranched glucose polymer containing β particles (diameter ~20 nm), which can form composite α particles (diameter ~50–300 nm), and includes a small but significant amount of bound protein. Size distributions of glycogen from livers of healthy and diabetic mice were examined using size-exclusion chromatography with two separate eluents: aqueous eluent and dimethylsulfoxide (DMSO) eluent. Morphologies were examined with transmission electron microscopy. Diabetic glycogen (DG) exhibited many α particles in the mild water-based solvent, but in DMSO, which breaks H bonds, these degraded to β particles; α particles however were always present in healthy glycogen (HG). This DG fragility shows the binding of β into α particles is different in HG and DG. The diabetic α particle fragility may be involved with the uncontrolled blood-sugar release symptomatic of diabetes: small β particles degrade more easily to glucose than α particles. This has implications for diabetes management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Meyer, F., Heilmeyer, L., Haschke, R.H., Fischer, E.H.: Control of phosphorylase activity in a muscle glycogen particle .1. Isolation and characterization of protein-glycogen complex. J. Biol. Chem. 245(24), 6642–6648 (1970)

    CAS  PubMed  Google Scholar 

  2. Rybicka, K.K.: Glycosomes—the organelles of glycogen metabolism. Tissue Cell 28(3), 253–265 (1996)

    Article  CAS  PubMed  Google Scholar 

  3. Stapleton, D., Nelson, C., Parsawar, K., McClain, D., Gilbert-Wilson, R., Barker, E., Rudd, B., Brown, K., Hendrix, W., O’Donnell, P., Parker, G.: Analysis of hepatic glycogen-associated proteins. Proteomics 10(12), 2320–2329 (2010). doi:10.1002/pmic.200900628

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Sullivan, M.A., Li, J., Li, C., Vilaplana, F., Zheng, L., Stapleton, D., Gray-Weale, A.A., Bowen, S., Gilbert, R.G.: Molecular structural differences between type-2-diabetic and healthy glycogen. Biomacromolecules 12(6), 1983–1986 (2011). doi:10.1021/bm2006054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Sullivan, M.A., Aroney, S.T.N., Li, S., Warren, F.J., Joo, L., Mak, K.S., Stapleton, D.I., Bell-Anderson, K.S., Gilbert, R.G.: Changes in glycogen structure over feeding cycle sheds new light on blood-glucose control. Biomacromolecules 15(2), 660–665 (2014). doi:10.1021/bm401714v

    Article  CAS  PubMed  Google Scholar 

  6. Sullivan, M.A., Powell, P.O., Witt, T., Vilaplana, F., Roura, E., Gilbert, R.G.: Improving size-exclusion chromatography for glycogen. J. Chromatogr. A 1332(1), 21–29 (2014). doi:10.1016/j.chroma.2014.01.053

    Article  CAS  PubMed  Google Scholar 

  7. Sullivan, M.A., O’Connor, M.J., Umana, F., Roura, E., Jack, K., Stapleton, D.I., Gilbert, R.G.: Molecular insights into glycogen alpha-particle formation. Biomacromolecules 13(11), 3805–3813 (2012). doi:10.1021/bm3012727

    Article  CAS  PubMed  Google Scholar 

  8. Powell, P.O., Sullivan, M.A., Sheehy, J.J., Schultz, B.L., Warren, F.J., Gilbert, R.G.: Acid hydrolysis and molecular density of phytoglycogen and liver glycogen helps with understanding the bonding in alpha (composite) glycogen molecules. PLoS One. (2015). doi:10.1371/journal.pone.0121337

  9. Roesler, W.J., Khandelwal, R.L.: Age-related changes in hepatic glycogen metabolism in the genetically diabetic (db/db) mouse. Diabetes 34(4), 395–402 (1985)

    Article  CAS  PubMed  Google Scholar 

  10. Sullivan, M.A., Li, S., Aroney, S.T., Deng, B., Li, C., Roura, E., Schulz, B.L., Harcourt, B.E., Forbes, J.M., Gilbert, R.G.: A rapid extraction method for glycogen from formalin-fixed liver. Carbohydr. Polym. 118(1), 9–15 (2015). doi:10.1016/j.carbpol.2014.11.005

    Article  CAS  PubMed  Google Scholar 

  11. Powell, P.O., Sullivan, M.A., Sweedman, M.C., Stapleton, D.I., Hasjim, J., Gilbert, R.G.: Extraction, isolation and characterisation of phytoglycogen from su-1 maize leaves and grain. Carbohydr. Polym. 101(1), 423–431 (2014). doi:10.1016/j.carbpol.2013.09.061

    Article  CAS  PubMed  Google Scholar 

  12. Lichti, G., Gilbert, R.G., Napper, D.H.: Mechanisms of latex particle formation and growth in the emulsion polymerization of styrene using the surfactant sodium dodecyl sulfate. J. Polym. Sci. Polym. Chem. Ed. 21, 269–291 (1983)

    Article  CAS  Google Scholar 

  13. Vilaplana, F., Gilbert, R.G.: Two-dimensional size/branch length distributions of a branched polymer. Macromolecules 43(17), 7321–7329 (2010). doi:10.1021/ma101349t

    Article  CAS  Google Scholar 

  14. Gilbert, R.G., Sullivan, M.A.: The molecular size distribution of glycogen and its relevance to diabetes (review). Aust. J. Chem. 67(4), 538–543 (2014). doi:10.1071/CH13573

    Article  CAS  Google Scholar 

  15. Varrot, A., Basheer, S.M., Imberty, A.: Fungal lectins: structure, function and potential applications. Curr. Opin. Struct. Biol. 23(5), 678–685 (2013). doi:10.1016/j.sbi.2013.07.007

    Article  CAS  PubMed  Google Scholar 

  16. Arnaud, J., Audfray, A., Imberty, A.: Binding sugars: from natural lectins to synthetic receptors and engineered neolectins. Chem. Soc. Rev. 42(11), 4798–4813 (2013). doi:10.1039/c2cs35435g

    Article  CAS  PubMed  Google Scholar 

  17. Crouzier, T., Beckwitt, C.H., Ribbeck, K.: Mucin multilayers assembled through sugar-lectin interactions. Biomacromolecules 13(10), 3401–3408 (2012). doi:10.1021/Bm301222f

    Article  CAS  PubMed  Google Scholar 

  18. He, S., Simpson, B.K., Ngadi, M.O., Xue, S.J., Shi, J., Ma, Y.: pH stability study of lectin from black turtle bean (Phaseolus vulgaris) as influenced by guanidinium-HCl and thermal treatment. Protein Peptide Lett 22(1), 45–51 (2015)

  19. Pusztai, A., Grant, G.: Assessment of lectin inactivation by heat and digestion. Methods Mol. Med. 9, 505–514 (1998). doi:10.1385/0-89603-396-1:505

    CAS  PubMed  Google Scholar 

  20. Roach, P.J., Depaoli-Roach, A.A., Hurley, T.D., Tagliabracci, V.S.: Glycogen and its metabolism: some new developments and old themes. Biochem. J. 441(3), 763–787 (2012). doi:10.1042/BJ20111416

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The support of the 1000-Talents program of the Chinese Foreign Experts Bureau, and an Australian Research Council Discovery grant, DP130102461, are gratefully acknowledged. We thank Dr. Enpeng Li and Mr. Shiqing Zhou for help with SEC analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert G. Gilbert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 920 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, B., Sullivan, M.A., Li, J. et al. Molecular structure of glycogen in diabetic liver. Glycoconj J 32, 113–118 (2015). https://doi.org/10.1007/s10719-015-9578-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-015-9578-6

Keywords

Navigation