Skip to main content
Log in

Glycosyltransferases, glycosylation and atherosclerosis

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Cardiovascular diseases arising from atherosclerosis are currently the leading cause of mortality worldwide. Leukocyte recruitment is a key step for the successful initiation of atherosclerosis and occurs predominantly in the inflamed endothelium. Leukocyte recruitment is mediated by a group of adhesive molecules and chemokine receptors, which are often glycosylated protein. Recent studies demonstrated that post-translational glycosylation by glycosyltransferases is necessary for adhesive molecules and chemokine receptors activities. Several glycosyltransferases, such as α2,3-sialyltransferases IV, α1,3-fucosyltransferases IV and VII, core 2 β1,6-N-acetylglucosaminyltransferase-I, are considered to participate in the synthesis of glycosylation for adhesive molecules and chemokine receptors, and the initiation of atherosclerotic lesions. In this review, we will discuss new data concerning the roles of different glycosyltransferases in atherogenesis. The knowledge of glycosyltransferases in atherogenesis offers the opportunity to develop novel therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hansson, G.K.: Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352(16), 1685–1695 (2005)

    Article  PubMed  CAS  Google Scholar 

  2. Libby, P., Ridker, P.M., Maseri, A.: Inflammation and atherosclerosis. Circulation 105(9), 1135–1143 (2002)

    Article  PubMed  CAS  Google Scholar 

  3. Ross, R.: The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362(6423), 801–809 (1993)

    Article  PubMed  CAS  Google Scholar 

  4. Huo, Y., Ley, K.: Adhesion molecules and atherogenesis. Acta Physiol. Scand. 173(1), 35–43 (2001)

    Article  PubMed  CAS  Google Scholar 

  5. Blankenberg, S., Barbaux, S., Tiret, L.: Adhesion molecules and atherosclerosis. Atherosclerosis 170(2), 191–203 (2003)

    Article  PubMed  CAS  Google Scholar 

  6. Tschoepe, D.: Adhesion molecules influencing atherosclerosis. Diabetes Res. Clin. Pract. 30, S19–S24 (1996)

    Article  CAS  Google Scholar 

  7. Lowe, J.B.: Glycosyltransferases and glycan structures contributing to the adhesive activities of L-, E- and P-selectin counter-receptors. Biochem. Soc. Symp. (69), 33–45 (2002).

  8. Jongstra-Bilen, J., Haidari, M., Zhu, S.N., Chen, M., Guha, D., Cybulsky, M.I.: Low-grade chronic inflammation in regions of the normal mouse arterial intima predisposed to atherosclerosis. J. Exp. Med. 203(9), 2073–2083 (2006)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Skalen, K., Gustafsson, M., Rydberg, E.K., Hulten, L.M., Wiklund, O., Innerarity, T.L., Boren, J.: Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417(6890), 750–754 (2002)

    Article  PubMed  CAS  Google Scholar 

  10. Oorni, K., Posio, P., Ala-Korpela, M., Jauhiainen, M., Kovanen, P.T.: Sphingomyelinase induces aggregation and fusion of small very low-density lipoprotein and intermediate-density lipoprotein particles and increases their retention to human arterial proteoglycans. Arterioscler. Thromb. Vasc. Biol. 25(8), 1678–1683 (2005)

    Article  PubMed  CAS  Google Scholar 

  11. Williams, K.J., Fau-Tabas, I., Tabas, I.: Lipoprotein retention–and clues for atheroma regression. Arterioscler. Thromb. Vasc. Biol. 25(8), 1536–1540 (2005)

    Article  PubMed  CAS  Google Scholar 

  12. Moore, K.J., Sheedy, F.J., Fisher, E.A.: Macrophages in atherosclerosis: a dynamic balance. Nat. Rev. Immunol. 13(10), 709–721 (2013)

    Article  PubMed  CAS  Google Scholar 

  13. Khan, B., Parthasarathy, S., Alexander, R., Medford, R.: Modified low density lipoprotein and its constituents augment cytokine-activated vascular cell adhesion molecule-1 gene expression in human vascular endothelial cells. J. Clin. Investig. 95(3), 1262 (1995)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Kita, T., Kume, N., Minami, M., Hayashida, K., Murayama, T., Sano, H., Moriwaki, H., Kataoka, H., Nishi, E., Horiuchi, H.: Role of oxidized LDL in atherosclerosis. Ann. N. Y. Acad. Sci. 947(1), 199–206 (2001)

    Article  PubMed  CAS  Google Scholar 

  15. Kaperonis, E.A., Liapis, C.D., Kakisis, J.D., Dimitroulis, D., Papavassiliou, V.G.: Inflammation and atherosclerosis. Eur. J. Vasc. Endovasc. Surg. 31(4), 386–393 (2006)

    Article  PubMed  CAS  Google Scholar 

  16. Tuttolomondo, A., Di Raimondo, D., Pecoraro, R., Arnao, V., Pinto, A., Licata, G.: Atherosclerosis as an inflammatory disease. Curr. Pharm. Des. 18(28), 4266–4288 (2012)

    Article  PubMed  CAS  Google Scholar 

  17. Braunersreuther, V., Mach, F., Steffens, S.: The specific role of chemokines in atherosclerosis. Thromb. Haemost. 97(5), 714–721 (2007)

    PubMed  CAS  Google Scholar 

  18. Eriksson, E.E., Xie, X., Werr, J., Thoren, P., Lindbom, L.: Importance of primary capture and L-selectin-dependent secondary capture in leukocyte accumulation in inflammation and atherosclerosis in vivo. J. Exp. Med. 194(2), 205–218 (2001)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Kansas, G.S.: Selectins and their ligands: current concepts and controversies. Blood 88(9), 3259–3287 (1996)

    PubMed  CAS  Google Scholar 

  20. Rosen, S.D., Bertozzi, C.R.: The selectins and their ligands. Curr. Opin. Cell Biol. 6(5), 663–673 (1994)

    Article  PubMed  CAS  Google Scholar 

  21. Vestweber, D.: The selectins and their ligands. Curr. Top. Microbiol. Immunol. 184, 65–75 (1993)

    PubMed  CAS  Google Scholar 

  22. Ley, K., Bullard, D.C., Arbones, M.L., Bosse, R., Vestweber, D., Tedder, T.F., Beaudet, A.L.: Sequential contribution of L- and P-selectin to leukocyte rolling in vivo. J. Exp. Med. 181(2), 669–675 (1995)

    Article  PubMed  CAS  Google Scholar 

  23. Bevilacqua, M.P., Pober, J.S., Mendrick, D.L., Cotran, R.S., Gimbrone Jr., M.A.: Identification of an inducible endothelial-leukocyte adhesion molecule. Proc. Natl. Acad. Sci. U. S. A. 84(24), 9238–9242 (1987)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. An, G., Wang, H., Tang, R., Yago, T., McDaniel, J.M., McGee, S., Huo, Y., Xia, L.: P-selectin glycoprotein ligand-1 is highly expressed on Ly-6Chi monocytes and a major determinant for Ly-6Chi monocyte recruitment to sites of atherosclerosis in mice. Circulation 117(25), 3227–3237 (2008)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Collins, R.G., Velji, R., Guevara, N.V., Hicks, M.J., Chan, L., Beaudet, A.L.: P-Selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice. J. Exp. Med. 191(1), 189–194 (2000)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Dong, Z.M., Brown, A.A., Wagner, D.D.: Prominent role of P-selectin in the development of advanced atherosclerosis in ApoE-deficient mice. Circulation 101(19), 2290–2295 (2000)

    Article  PubMed  CAS  Google Scholar 

  27. Dong, Z.M., Chapman, S.M., Brown, A.A., Frenette, P.S., Hynes, R.O., Wagner, D.D.: The combined role of P- and E-selectins in atherosclerosis. J. Clin. Invest. 102(1), 145–152 (1998)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Phillips, J.W., Barringhaus, K.G., Sanders, J.M., Hesselbacher, S.E., Czarnik, A.C., Manka, D., Vestweber, D., Ley, K., Sarembock, I.J.: Single injection of P-selectin or P-selectin glycoprotein ligand-1 monoclonal antibody blocks neointima formation after arterial injury in apolipoprotein E-deficient mice. Circulation 107(17), 2244–2249 (2003)

    Article  PubMed  CAS  Google Scholar 

  29. Rozenberg, I., Sluka, S.H., Mocharla, P., Hallenberg, A., Rotzius, P., Boren, J., Krankel, N., Landmesser, U., Borsig, L., Luscher, T.F., Eriksson, E.E., Tanner, F.C.: Deletion of L-selectin increases atherosclerosis development in ApoE-/- mice. PLoS One 6(7), e21675 (2011)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Reape, T.J., Groot, P.H.: Chemokines and atherosclerosis. Atherosclerosis 147(2), 213–225 (1999)

    Article  PubMed  CAS  Google Scholar 

  31. Zernecke, A., Weber, C.: Chemokines in the vascular inflammatory response of atherosclerosis. Cardiovasc. Res. 86(2), 192–201 (2010)

    Article  PubMed  CAS  Google Scholar 

  32. Tacke, F., Alvarez, D., Kaplan, T.J., Jakubzick, C., Spanbroek, R., Llodra, J., Garin, A., Liu, J., Mack, M., van Rooijen, N.: Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Invest. 117(1), 185–194 (2007)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Heller, E.A., Liu, E., Tager, A.M., Yuan, Q., Lin, A.Y., Ahluwalia, N., Jones, K., Koehn, S.L., Lok, V.M., Aikawa, E.: Chemokine CXCL10 promotes atherogenesis by modulating the local balance of effector and regulatory T cells. Circulation 113(19), 2301–2312 (2006)

    Article  PubMed  CAS  Google Scholar 

  34. Van Wanrooij, E.J., de Jager, S.C., van Es, T., de Vos, P., Birch, H.L., Owen, D.A., Watson, R.J., Biessen, E.A., Chapman, G.A., van Berkel, T.J.: CXCR3 antagonist NBI-74330 attenuates atherosclerotic plaque formation in LDL receptor–deficient mice. Arterioscler. Thromb. Vasc. Biol. 28(2), 251–257 (2008)

    Article  PubMed  CAS  Google Scholar 

  35. Combadière, C., Potteaux, S., Rodero, M., Simon, T., Pezard, A., Esposito, B., Merval, R., Proudfoot, A., Tedgui, A., Mallat, Z.: Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6Chi and Ly6Clo monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation 117(13), 1649–1657 (2008)

    Article  PubMed  CAS  Google Scholar 

  36. Veillard, N.R., Steffens, S., Pelli, G., Lu, B., Kwak, B.R., Gerard, C., Charo, I.F., Mach, F.: Differential influence of chemokine receptors CCR2 and CXCR3 in development of atherosclerosis in vivo. Circulation 112(6), 870–878 (2005)

    Article  PubMed  CAS  Google Scholar 

  37. Potteaux, S., Combadiere, C., Esposito, B., Lecureuil, C., Ait-Oufella, H., Merval, R., Ardouin, P., Tedgui, A., Mallat, Z.: Role of bone marrow-derived CC-chemokine receptor 5 in the development of atherosclerosis of low-density lipoprotein receptor knockout mice. Arterioscler. Thromb. Vasc. Biol. 26(8), 1858–1863 (2006)

    Article  PubMed  CAS  Google Scholar 

  38. Braunersreuther, V., Zernecke, A., Arnaud, C., Liehn, E.A., Steffens, S., Shagdarsuren, E., Bidzhekov, K., Burger, F., Pelli, G., Luckow, B.: Ccr5 but not Ccr1 deficiency reduces development of diet-induced atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 27(2), 373–379 (2007)

    Article  PubMed  CAS  Google Scholar 

  39. Lesnik, P., Haskell, C.A., Charo, I.F.: Decreased atherosclerosis in CX 3 CR1−/−mice reveals a role for fractalkine in atherogenesis. J. Clin. Invest. 111(3), 333–340 (2003)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Combadière, C., Potteaux, S., Gao, J.-L., Esposito, B., Casanova, S., Lee, E.J., Debré, P., Tedgui, A., Murphy, P.M., Mallat, Z.: Decreased atherosclerotic lesion formation in CX3CR1/apolipoprotein E double knockout mice. Circulation 107(7), 1009–1016 (2003)

    Article  PubMed  CAS  Google Scholar 

  41. Liu, P., Yen-Rei, A.Y., Spencer, J.A., Johnson, A.E., Vallanat, C.T., Fong, A.M., Patterson, C., Patel, D.D.: CX3CR1 deficiency impairs dendritic cell accumulation in arterial intima and reduces atherosclerotic burden. Arterioscler. Thromb. Vasc. Biol. 28(2), 243–250 (2008)

    Article  PubMed  CAS  Google Scholar 

  42. Teupser, D., Pavlides, S., Tan, M., Gutierrez-Ramos, J.-C., Kolbeck, R., Breslow, J.L.: Major reduction of atherosclerosis in fractalkine (CX3CL1)-deficient mice is at the brachiocephalic artery, not the aortic root. Proc. Natl. Acad. Sci. U. S. A. 101(51), 17795–17800 (2004)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Nageh, M.F., Sandberg, E.T., Marotti, K.R., Lin, A.H., Melchior, E.P., Bullard, D.C., Beaudet, A.L.: Deficiency of inflammatory cell adhesion molecules protects against atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 17(8), 1517–1520 (1997)

    Article  PubMed  CAS  Google Scholar 

  44. Shih, P.T., Brennan, M.-L., Vora, D.K., Territo, M.C., Strahl, D., Elices, M.J., Lusis, A.J., Berliner, J.A.: Blocking very late antigen-4 integrin decreases leukocyte entry and fatty streak formation in mice fed an atherogenic diet. Circ. Res. 84(3), 345–351 (1999)

    Article  PubMed  CAS  Google Scholar 

  45. Lowe, J.B.: Glycosylation in the control of selectin counter‐receptor structure and function. Immunol. Rev. 186(1), 19–36 (2002)

    Article  PubMed  CAS  Google Scholar 

  46. Frommhold, D., Ludwig, A., Bixel, M.G., Zarbock, A., Babushkina, I., Weissinger, M., Cauwenberghs, S., Ellies, L.G., Marth, J.D., Beck-Sickinger, A.G., Sixt, M., Lange-Sperandio, B., Zernecke, A., Brandt, E., Weber, C., Vestweber, D., Ley, K., Sperandio, M.: Sialyltransferase ST3Gal-IV controls CXCR2-mediated firm leukocyte arrest during inflammation. J. Exp. Med. 205(6), 1435–1446 (2008)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Sperandio, M.: Selectins and glycosyltransferases in leukocyte rolling in vivo. Febs J. 273(19), 4377–4389 (2006)

    Article  PubMed  CAS  Google Scholar 

  48. Bannert, N., Craig, S., Farzan, M., Sogah, D., Santo, N.V., Choe, H., Sodroski, J.: Sialylated O-glycans and sulfated tyrosines in the NH2-terminal domain of CC chemokine receptor 5 contribute to high affinity binding of chemokines. J. Exp. Med. 194(11), 1661–1673 (2001)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Harduin-Lepers, A., Vallejo-Ruiz, V., Krzewinski-Recchi, M.A., Samyn-Petit, B., Julien, S., Delannoy, P.: The human sialyltransferase family. Biochimie 83(8), 727–737 (2001)

    Article  PubMed  CAS  Google Scholar 

  50. Doring, Y., Noels, H., Mandl, M., Kramp, B., Neideck, C., Lievens, D., Drechsler, M., Megens, R.T., Tilstam, P.V., Langer, M., Hartwig, H., Theelen, W., Marth, J.D., Sperandio, M., Soehnlein, O., Weber, C.: Deficiency of the sialyltransferase St3Gal4 reduces Ccl5-mediated myeloid cell recruitment and arrest: short communication. Circ. Res. 114(6), 976–981 (2014)

    Article  PubMed  CAS  Google Scholar 

  51. Sperandio, M., Frommhold, D., Babushkina, I., Ellies, L.G., Olson, T.S., Smith, M.L., Fritzsching, B., Pauly, E., Smith, D.F., Nobiling, R., Linderkamp, O., Marth, J.D., Ley, K.: Alpha 2,3-sialyltransferase-IV is essential for L-selectin ligand function in inflammation. Eur. J. Immunol. 36(12), 3207–3215 (2006)

    Article  PubMed  CAS  Google Scholar 

  52. Homeister, J.W., Daugherty, A., Lowe, J.B.: Alpha(1,3)fucosyltransferases FucT-IV and FucT-VII control susceptibility to atherosclerosis in apolipoprotein E−/− mice. Arterioscler. Thromb. Vasc. Biol. 24(10), 1897–1903 (2004)

    Article  PubMed  CAS  Google Scholar 

  53. Gitlin, J.M., Homeister, J.W., Bulgrien, J., Counselman, J., Curtiss, L.K., Lowe, J.B., Boisvert, W.A.: Disruption of tissue-specific fucosyltransferase VII, an enzyme necessary for selectin ligand synthesis, suppresses atherosclerosis in mice. Am. J. Pathol. 174(1), 343–350 (2009)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Malý, P., Thall, A.D., Petryniak, B., Rogers, C.E., Smith, P.L., Marks, R.M., Kelly, R.J., Gersten, K.M., Cheng, G., Saunders, T.L., Camper, S.A., Camphausen, R.T., Sullivan, F.X., Isogai, Y., Hindsgaul, O., von Andrian, U.H., Lowe, J.B.: The α(1,3)Fucosyltransferase Fuc-TVII controls leukocyte trafficking through an essential role in L-, E-, and P-selectin ligand biosynthesis. Cell 86(4), 643–653 (1996)

    Article  PubMed  Google Scholar 

  55. Homeister, J.W., Thall, A.D., Petryniak, B., Maly, P., Rogers, C.E., Smith, P.L., Kelly, R.J., Gersten, K.M., Askari, S.W., Cheng, G., Smithson, G., Marks, R.M., Misra, A.K., Hindsgaul, O., von Andrian, U.H., Lowe, J.B.: The alpha(1,3)fucosyltransferases FucT-IV and FucT-VII exert collaborative control over selectin-dependent leukocyte recruitment and lymphocyte homing. Immunity 15(1), 115–126 (2001)

    Article  PubMed  CAS  Google Scholar 

  56. Li, F., Wilkins, P.P., Crawley, S., Weinstein, J., Cummings, R.D., McEver, R.P.: Post-translational modifications of recombinant P-selectin glycoprotein ligand-1 required for binding to P-and E-selectin. J. Biol. Chem. 271(6), 3255–3264 (1996)

    Article  PubMed  CAS  Google Scholar 

  57. Wang, H., Tang, R., Zhang, W., Amirikian, K., Geng, Z., Geng, J., Hebbel, R.P., Xia, L., Marth, J.D., Fukuda, M.: Core2 1-6-N-Glucosaminyltransferase-I is crucial for the formation of atherosclerotic lesions in apolipoprotein e–deficient mice. Arterioscler. Thromb. Vasc. Biol. 29(2), 180–187 (2009)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Barran, P., Fellinger, W., Warren, C.E., Dennis, J.W., Ziltener, H.J.: Modification of CD43 and other lymphocyte O-glycoproteins by core 2 N-acetylglucosaminyltransferase. Glycobiology 7(1), 129–136 (1997)

    Article  PubMed  CAS  Google Scholar 

  59. Carlow, D.A., Ziltener, H.J.: CD43 deficiency has no impact in competitive in vivo assays of neutrophil or activated T cell recruitment efficiency. J. Immunol. (Baltimore, Md. : 1950) 177(9), 6450–6459 (2006)

    Article  CAS  Google Scholar 

  60. Kumar, R., Camphausen, R.T., Sullivan, F.X., Cumming, D.A.: Core2 beta-1,6-N-acetylglucosaminyltransferase enzyme activity is critical for P-selectin glycoprotein ligand-1 binding to P-selectin. Blood 88(10), 3872–3879 (1996)

    PubMed  CAS  Google Scholar 

  61. Hadzibegovic, I., Vrselja, Z., Lauc, G., Curic, G.: Expression of leukocyte adhesion-related glycosyltransferase genes in acute coronary syndrome patients. Inflamm. Res. 63(8), 629–636 (2014)

    Article  PubMed  CAS  Google Scholar 

  62. Cullen, P., Mohr, S., Brennhausen, B., Cignarella, A., Assmann, G.: Downregulation of the selectin ligand-producing fucosyltransferases Fuc-TIV and Fuc-TVII during foam cell formation in monocyte-derived macrophages. Arterioscler. Thromb. Vasc. Biol. 17(8), 1591–1598 (1997)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (Project no. 81370403) and Specialized Research Fund for the Doctoral Program of Higher Education (No.20125503110008).

Conflict of interest

The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, Q., Yu, C. Glycosyltransferases, glycosylation and atherosclerosis. Glycoconj J 31, 605–611 (2014). https://doi.org/10.1007/s10719-014-9560-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-014-9560-8

Keywords

Navigation