Skip to main content
Log in

Sialyl-glycoconjugates in cholesterol-rich microdomains of P388 cells are the triggers for apoptosis induced by Rana catesbeiana oocyte ribonuclease

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

SBL/RC-RNase was originally isolated from frog (Rana catesbeiana) oocytes and purified as a novel sialic acid-binding lectin (SBL) that displayed strong anti-cancer activity. SBL was later shown to be identical to a ribonuclease (RC-RNase) from oocytes of the same species. The administration of SBL/RC-RNase induced apoptosis (with nuclear condensation and DNA fragmentation) in mouse leukemia P388 cells but did not kill umbilical vein endothelial or fibroblast cells derived from normal tissues. The cytotoxic activity of SBL/RC-RNase was inhibited by desialylation of P388 cells and/or the co-presence of free bovine submaxillary mucin. FACS analysis showed that SBL/RC-RNase was incorporated into cells after attachment to cholesterol-rich microdomains. Addition of the cholesterol remover methyl-β-cyclodextrin reduced SBL/RC-RNase-induced apoptosis. Apoptosis occurred through the caspase-3 pathway following activation of caspase-8 by SBL/RC-RNase. A heat shock cognate protein (Hsc70) and a heat shock protein (Hsp70) (each 70 kDa) on the cell membrane were shown to bind to SBL/RC-RNase by mass spectrometric and flow cytometric analyses. Quercetin, an inhibitor of Hsc70 and Hsp70, significantly reduced SBL/RC-RNase-induced apoptosis. Taken together, our findings suggest that sialyl-glycoconjugates present in cholesterol-rich microdomains form complexes with Hsc70 or Hsp70 that act as triggers for SBL/RC-RNase to induce apoptosis through a pathway involving the activation of caspase-3 and caspase-8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

FACS:

Fluorescence-activated cell sorting

GSL:

Glycosphingolipid

HSC70:

70-kDa heat shock cognate protein

HSP70:

70-kDa heat shock protein

MβCD:

Methyl β-D-cyclodextrin

NHDF:

Normal human epidermal fibroblast

NHEM:

Normal human epidermal melanocyte

NHEK:

Normal human keratinocyte cell

RC-RNase:

Rana catesbeiana ribonuclease

SBL:

Sialic acid-binding lectin

References

  1. Nitta, K., Takayanagi, G., Kawauchi, H., Hakomori, S.: Isolation and characterization of Rana catesbeiana lectin and demonstration of the lectin-binding glycoprotein of rodent and human tumor cell membranes. Cancer Res. 47, 4877–4883 (1987)

    CAS  PubMed  Google Scholar 

  2. Titani, K., Takio, K., Kuwada, M., Nitta, K., Sakakibara, F., Kawauchi, H., Takayanagi, G., Hakomori, S.: Amino acid sequence of sialic acid binding lectin from frog (Rana catesbeiana) eggs. Biochemistry 26, 2189–2194 (1987)

    Article  CAS  PubMed  Google Scholar 

  3. Nitta, R., Katayama, N., Okabe, Y., Iwama, M., Watanabe, H., Abe, Y., Okazaki, T., Ohgi, K., Irie, M.: Primary structure of a ribonuclease from bullfrog (Rana catesbeiana) liver. J. Biochem. 106, 729–735 (1989)

    CAS  PubMed  Google Scholar 

  4. Nitta, K., Oyama, F., Oyama, R., Sekiguchi, K., Kawauchi, H., Takayanagi, Y., Hakomori, S., Titani, K.: Ribonuclease activity of sialic acid-binding lectin from Rana catesbeiana eggs. Glycobiology 3, 37–45 (1993)

    Article  CAS  PubMed  Google Scholar 

  5. Nitta, K., Ozaki, K., Tsukamoto, Y., Furusawa, S., Ohkubo, Y., Takimoto, H., Murata, R., Hosono, M., Hikichi, N., Sasaki, K., Kawauchi, H., Takayanagi, Y., Tsuiki, S., Hakomori, S.: Characterization of a Rana catesbeiana lectin-resistant mutant of leukemia P388 cells. Cancer Res. 54, 928–934 (1994)

    CAS  PubMed  Google Scholar 

  6. Nitta, K., Ozaki, K., Tsukamoto, Y., Hosono, M., Ogawa-Konno, Y., Kawauchi, H., Takayanagi, Y., Tsuiki, S., Hakomori, S.: Catalytic lectin (leczyme) from bullfrog (Rana catesbeiana) eggs. Int. J. Oncol. 9, 19–23 (1996)

    CAS  PubMed  Google Scholar 

  7. Nitta, K.: Leczyme. Methods Enzymol. 341, 368–374 (2001)

    Article  CAS  PubMed  Google Scholar 

  8. Wu, Y.N., Mikulski, S.M., Adelt, W., Rybak, S.M., Youle, R.J.: A cytotoxic ribonuclease. Study of the mechanism of onconase cytotoxicity. J. Biol. Chem. 268, 10668–10693 (1993)

    Google Scholar 

  9. Ardelt, W., Mikulski, S.M., Shogen, K.: Amino acid sequence of an anti-tumor protein from Rana pipiens oocytes and early embryos. Homology to pancreatic ribonucleases. J. Biol. Chem. 266, 245–251 (1991)

    CAS  PubMed  Google Scholar 

  10. Liao, Y.D.: A pyrimidine-guanine sequence-specific ribonuclease from Rana catesbeiana (bullfrog) oocytes. Nucleic Acids Res. 20, 1371–1377 (1992)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Liao, Y.D., Wang, J.J.: Yolk granules are the major compartment for bullfrog (Rana catesbeiana) oocyte-specific ribonuclease. Eur. J. Biochem. 222, 215–220 (1994)

    Article  CAS  PubMed  Google Scholar 

  12. Liao, Y.D., Huang, H.C., Chan, H.J., Kuo, S.J.: Large-scale preparation of a ribonuclease from Rana catesbeiana (bullfrog) oocytes and characterization of its specific cytotoxic activity against tumor cells. Protein Expr. Purif. 7, 194–202 (1996)

    Article  CAS  PubMed  Google Scholar 

  13. Goparaju, C.M., Blasberg, J.D., Volinia, S., Palatini, J., Ivanov, S., Donington, J.S., Croce, C., Yang, H., Pass, H.I.: Onconase mediated NFKβ downregulation in malignant pleural mesothelioma. Oncogene 30, 2767–2777 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Nasu, M., Carbone, M., Gaudino, G., Ly, B.H., Bertino, P., Shimizu, D., Morris, P., Pass, H.I., Yang, H.: Ranpirnase interferes with NF-κB pathway pathway and MMP9 activity, inhibiting malignant mesothelioma cell invasiveness and xenograft growth. Genes Cancer 2, 576–584 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Hu, C.C., Tang, C.H., Wang, J.J.: Caspase activation in response to cytotoxic Rana catesbeiana ribonuclease in MCR-7 cells. FEBS Lett. 503, 65–68 (2001)

    Article  CAS  PubMed  Google Scholar 

  16. Tseng, H.H., Yu, Y.L., Chen, Y.L.S., Chen, J.H., Chou, C.L., Kou, T.Y., Wang, J.J., Lee, M.C., Huang, T.H., Chen, M.H.C., Yiang, G.T.: RC-RNase-induced cell death in estrogen receptor positive breast tumor through down-regulation of Bcl-2 and estrogen receptor. Oncol. Rep. 25, 849–853 (2011)

    Article  CAS  PubMed  Google Scholar 

  17. Chang, C.F., Chen, C., Chen, Y.C., Hom, K., Huang, R.F., Huang, T.H.: The solution structure of a cytotoxic ribonuclease from the oocytes of Rana catesbeiana (bullfrog). J. Mol. Biol. 283, 231–244 (1998)

    Article  CAS  PubMed  Google Scholar 

  18. Liu, J.H., Liao, Y.D., Sun, Y.J.: Crystallization and preliminary X-ray diffraction analysis of cytotoxic ribonucleases from bullfrog Rana catesbeiana. Acta Crystallogr. D Biol. Crystallogr. 57, 1697–1699 (2001)

    Article  CAS  PubMed  Google Scholar 

  19. Turcotte, R.F., Lavis, L.D., Raines, R.T.: Onconase cytotoxicity relies on the distribution of its positive charge. FEBS J. 276, 3846–3857 (2009)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Sundless, N.K., Raines, R.T.: Arginine residues are more effective than lysine residues in eliciting the cellular uptake of onconase. Biochemistry 50, 10293–10299 (2011)

    Article  Google Scholar 

  21. Tennant, J.R.: Evaluation of the trypan blue technique for determination of cell viability. Transplantation 2, 685–694 (1964)

    Article  CAS  PubMed  Google Scholar 

  22. Vyas, H.K., Pal, R., Vishwakarma, R., Lohiya, N.K., Talwar, G.P.: Selective killing of leukemia and lymphoma cells ectopically expressing hCGβ by a conjugate of curcumin with an antibody against hCGβ subunit. Oncology 76, 101–111 (2009)

    Article  CAS  PubMed  Google Scholar 

  23. Pepper, C., Thomas, A., Tucker, H., Hoy, T., Bentley, P.: Flow cytometric assessment of three different methods for the measurement of in vivo apoptosis. Leuk. Res. 22, 439–444 (1998)

    Article  CAS  PubMed  Google Scholar 

  24. Sugawara, S., Hosono, M., Ogawa, Y., Takayanagi, M., Nitta, K.: Catfish egg lectin causes rapid activation of multidrug resistance 1 P-glycoprotein as a lipid translocase. Biol. Pharm. Bull. 28, 434–441 (2005)

    Article  CAS  PubMed  Google Scholar 

  25. Sugawara, S., Kawano, T., Omoto, T., Hosono, M., Tatsuta, T., Nitta, K.: Binding of Silurus asotus lectin to Gb3 on Raji cells causes disappearance of membrane-bound form of HSP70. Biochim. Biophys. Acta 1790, 101–109 (2009)

    Article  CAS  PubMed  Google Scholar 

  26. Gniadecki, R., Christoffersen, N., Wulf, H.C.: Cholesterol-rich plasma membrane domains (lipid rafts) in keratinocytes: importance in the baseline and UVA-induced generation of reactive oxygen species. J. Investig. Dermatol. 118, 582–588 (2001)

    Article  Google Scholar 

  27. Hakomori, S., Handa, K.: Interaction of glycosphingolipids with signal transducers and membrane proteins in glycosphingolipid-enriched microdomains. Methods Enzymol. 363, 191–207 (2003)

    Article  CAS  PubMed  Google Scholar 

  28. Laemmli, U.K.: Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970)

    Article  CAS  PubMed  Google Scholar 

  29. Matsudaira, P.: Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J. Biol. Chem. 262, 10035–10038 (1987)

    CAS  PubMed  Google Scholar 

  30. Krajewski, S., Zapata, J.M., Reed, J.C.: Detection of multiple antigens on western blots. Anal. Biochem. 236, 221–228 (1996)

    Article  CAS  PubMed  Google Scholar 

  31. Hamaguchi, A., Suzuki, E., Murayama, K., Fujimura, T., Hikita, T., Iwabuchi, K., Handa, K., Withers, D.A., Casters, S.C., Fu, H., Hakomori, S.: Sphingosine-denependent protein kinase-1, directed to 14-3-3, is identified as the kinase domain of protein kinase Cd. J. Biol. Chem. 278, 41557–41565 (2003)

    Article  CAS  PubMed  Google Scholar 

  32. Perkins, D.N., Pappin, D.J.C., Creasy, D.M., Cottrell, J.S.: Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999)

    Article  CAS  PubMed  Google Scholar 

  33. Kamiya, Y., Oyama, F., Oyama, R., Sakakibara, F., Nitta, K., Kawauchi, H., Takayanagi, Y., Titani, K.: Amino acid sequence of a lectin from Japanese frog (Rana japonica) eggs. J. Biochem. 108, 139–143 (1990)

    CAS  PubMed  Google Scholar 

  34. Morawski, M., Hartlage-Rubsamen, M., Jager, C., Waniek, A., Schilling, S., Schwab, C., McGeer, P.L., Arendt, T., Demuth, H.U., Rossner, S.: Distinct glutaminyl cyclase expression in Edinger-Westphal nucleus, locus coeruleus and nucleus basalis Meynert contributes to pGlu-Aβ pathology in Alzheimer’s disease. Acta Neuropathol. 120, 195–207 (2010)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Chao, T.Y., Lavis, L.D., Raines, R.T.: Cellular uptake of ribonuclease A relies an anionic glycans. Biochemistry 49, 10666–10673 (2010)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Su, X., Sykes, J.B., Ao, L., Raeburn, C.D., Fullerton, D.A., Meng, X.: Extracellular heat shock cognate protein 70 induces cardiac functional tolerance to endotoxin: differential effect on TNF-α and ICAM-1 levels on heart tissue. Cytokine 51, 60–66 (2010)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Young, J.C., Barral, J.M., Hartl, F.U.: More than folding: localized functions of cytosolic chaperones. Trends Biochem. Sci. 28, 541–547 (2003)

    Article  CAS  PubMed  Google Scholar 

  38. Zou, N., Ao, L., Cleveland Jr., J.C., Yang, X., Su, X., Cai, G.Y., Banerjee, A., Fullerton, D.A., Meng, X.: Critical role of extracellular heat shock cognate protein 70 in the myocardial inflammatory response and cardiac dysfunction after global ischemia-reperfusion. Am. J. Physiol. Heart Circ. Physiol. 294, H2805–H2813 (2008)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Harada, Y., Sato, C., Kitajima, K.: Complex formation of 70 kDa heat shock protein with acidic glycolipids and phospholipids. Biochem. Biophys. Res. Commun. 353, 655–660 (2007)

    Article  CAS  PubMed  Google Scholar 

  40. Maehashi, E., Sato, C., Ohta, K., Harada, Y., Matsuda, T., Hirohashi, N., Lennarz, W.J., Kitajima, K.: Identification of the sea urchin 350-kDa sperm-binding protein as a new sialic acid-binding lectin that belongs to the heat shock protein 110 family: implication of its binding to gangliosides in sperm lipid rafts in fertilization. J. Biol. Chem. 278, 42050–42057 (2003)

    Article  CAS  PubMed  Google Scholar 

  41. Hatakeyama, S., Sugihara, K., Nakayama, J., Akama, T.O., Wong, S.M., Kawashima, H., Zhang, J., Smith, D.F., Ohyama, C., Fukuda, M., Fukuda, M.N.: Identification of mRNA splicing factors as the endothelial receptor for carbohydrate-dependent lung colonization of cancer cells. Proc. Natl. Acad. Sci. U. S. A. 106, 3095–3100 (2009)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Haudek, K.C., Patterson, R.J., Wang, J.L.: SP proteins and galectins: what’s in a name? Glycobiology 20, 1199–1207 (2010)

    Article  CAS  PubMed  Google Scholar 

  43. Haudek, K.C., Spronk, K.J., Voss, P.G., Patterson, R.J., Wang, J.L., Arnoys, E.J.: Dynamics of galectin-3 in the nucleus and cytoplasm. Biochim. Biophys. Acta 1800, 181–189 (2010)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by Grants-In-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) Japan, the Japan Society for the Promotion of Science (JSPS) and Nagasaki International University. The authors are grateful to Dr. Stephen Anderson for English editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Ogawa.

Additional information

Y. Ogawa and S. Sugawara made equal contributions to the study and are both considered as first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogawa, Y., Sugawara, S., Tatsuta, T. et al. Sialyl-glycoconjugates in cholesterol-rich microdomains of P388 cells are the triggers for apoptosis induced by Rana catesbeiana oocyte ribonuclease. Glycoconj J 31, 171–184 (2014). https://doi.org/10.1007/s10719-013-9513-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-013-9513-7

Keywords

Navigation