Skip to main content

Advertisement

Log in

Aberrantly glycosylated MUC1 is expressed on the surface of breast cancer cells and a target for antibody-dependent cell-mediated cytotoxicity

Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Protein glycosylation often changes during cancer development, resulting in the expression of cancer-associated carbohydrate antigens. In particular mucins such as MUC1 are subject to these changes. We previously identified an immunodominant Tn-MUC1 (GalNAc-α-MUC1) cancer-specific epitope not covered by immunological tolerance in MUC1 humanized mice and man. The objective of this study was to determine if mouse antibodies to this Tn-MUC1 epitope induce antibody-dependent cellular cytotoxicity (ADCC) pivotal for their potential use in cancer immunotherapy. Binding affinity of mAb 5E5 directed to Tn-MUC1 was investigated using BiaCore. The availability of Tn-MUC1 on the surface of breast cancer cells was evaluated by immunohistochemistry, confocal microscopy, and flow cytometry, followed by in vitro assessment of antibody-dependent cellular cytotoxicity by mAb 5E5. Biacore analysis demonstrated high affinity binding (KD = 1.7 nM) of mAb 5E5 to its target, Tn-MUC1. Immunolabelling with mAb 5E5 revealed surface expression of the Tn-MUC1 epitope in breast cancer tissue and cell lines, and mAb 5E5 induced ADCC in two human breast cancer cell lines, MCF7 and T47D. Aberrantly glycosylated MUC1 is expressed on the surface of breast cancer cells and a target for antibody-dependent cell-mediated cytotoxicity suggesting that antibodies targeting glycopeptide epitopes on mucins are strong candidates for cancer-specific immunotherapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ADCC:

Antibody-dependent cellular cytotoxicity

mAb:

Monoclonal antibody

VNTR:

Variable number tandem repeats

GalNAc:

N-acetylgalactosamine

NeuAc:

N-acetylneuraminic acid

CDC:

Complement-dependent cytotoxicity

MAC:

Membrane attack complex

Gal:

Galactose

PBMC:

peripheral blood mononuclear cells

NK:

Natural killer

FcγR:

Fc-γ-receptors

References

  1. Singh, P.K., Hollingsworth, M.A.: Cell surface-associated mucins in signal transduction. Trends Cell Biol. 16(9), 467–476 (2006)

    Article  PubMed  CAS  Google Scholar 

  2. Taylor-Papadimitriou, J., Burchell, J.M., Plunkett, T., Graham, R., Correa, I., Miles, D., Smith, M.: MUC1 and the immunobiology of cancer. J. Mammary Gland Biol. Neoplasia 7(2), 209–221 (2002)

    Article  PubMed  Google Scholar 

  3. Sorensen, A.L., Reis, C.A., Tarp, M.A., Mandel, U., Ramachandran, K., Sankaranarayanan, V., Schwientek, T., Graham, R., Taylor-Papadimitriou, J., Hollingsworth, M.A., et al.: Chemoenzymatically synthesized multimeric Tn/STn MUC1 glycopeptides elicit cancer-specific anti-MUC1 antibody responses and override tolerance. Glycobiology 16(2), 96–107 (2006)

    Article  PubMed  CAS  Google Scholar 

  4. Lloyd, K.O., Burchell, J., Kudryashov, V., Yin, B.W., Taylor-Papadimitriou, J.: Comparison of O-linked carbohydrate chains in MUC-1 mucin from normal breast epithelial cell lines and breast carcinoma cell lines. Demonstration of simpler and fewer glycan chains in tumor cells. J. Biol. Chem. 271(52), 33325–33334 (1996)

    Article  PubMed  CAS  Google Scholar 

  5. Tarp, M.A., Clausen, H.: Mucin-type O-glycosylation and its potential use in drug and vaccine development. Biochim. Biophys. Acta 1780(3), 546–563 (2008)

    Article  PubMed  CAS  Google Scholar 

  6. Hakomori, S., Yamamura, S., Handa, A.K.: Signal transduction through glyco(sphingo)lipids. Introduction and recent studies on glyco(sphingo)lipid-enriched microdomains. Ann. N. Y. Acad. Sci. 845, 1–10 (1998)

    Article  PubMed  CAS  Google Scholar 

  7. Springer, G.F.: T and Tn, general carcinoma autoantigens. Science 224(4654), 1198–1206 (1984)

    Article  PubMed  CAS  Google Scholar 

  8. Maraveyas, A., Snook, D., Hird, V., Kosmas, C., Meares, C.F., Lambert, H.E., Epenetos, A.A.: Pharmacokinetics and toxicity of an yttrium-90-CITC-DTPA-HMFG1 radioimmunoconjugate for intraperitoneal radioimmunotherapy of ovarian cancer. Cancer 73(3 Suppl), 1067–1075 (1994)

    Article  PubMed  CAS  Google Scholar 

  9. DeNardo, S.J., Kramer, E.L., O’Donnell, R.T., Richman, C.M., Salako, Q.A., Shen, S., Noz, M., Glenn, S.D., Ceriani, R.L., DeNardo, G.L.: Radioimmunotherapy for breast cancer using indium-111/yttrium-90 BrE-3: results of a phase I clinical trial. J. Nucl. Med. 38(8), 1180–1185 (1997)

    PubMed  CAS  Google Scholar 

  10. Snijdewint, F.G., von Mensdorff-Pouilly, S., Karuntu-Wanamarta, A.H., Verstraeten, A.A., Livingston, P.O., Hilgers, J., Kenemans, P.: Antibody-dependent cell-mediated cytotoxicity can be induced by MUC1 peptide vaccination of breast cancer patients. Int. J. Cancer 93(1), 97–106 (2001)

    Article  PubMed  CAS  Google Scholar 

  11. Karanikas, V., Hwang, L.A., Pearson, J., Ong, C.S., Apostolopoulos, V., Vaughan, H., Xing, P.X., Jamieson, G., Pietersz, G., Tait, B., et al.: Antibody and T cell responses of patients with adenocarcinoma immunized with mannan-MUC1 fusion protein. J. Clin. Invest. 100(11), 2783–2792 (1997)

    Article  PubMed  CAS  Google Scholar 

  12. Apostolopoulos, V., Pietersz, G.A., Tsibanis, A., Tsikkinis, A., Drakaki, H., Loveland, B.E., Piddlesden, S.J., Plebanski, M., Pouniotis, D.S., Alexis, M.N., et al.: Pilot phase III immunotherapy study in early-stage breast cancer patients using oxidized mannan-MUC1 [ISRCTN71711835]. Breast Cancer Res. 8(3), R27 (2006)

    Article  PubMed  Google Scholar 

  13. Loveland, B.E., Zhao, A., White, S., Gan, H., Hamilton, K., Xing, P.X., Pietersz, G.A., Apostolopoulos, V., Vaughan, H., Karanikas, V., et al.: Mannan-MUC1-pulsed dendritic cell immunotherapy: a phase I trial in patients with adenocarcinoma. Clin. Cancer Res. 12(3 Pt 1), 869–877 (2006)

    Article  PubMed  CAS  Google Scholar 

  14. Goydos, J.S., Elder, E., Whiteside, T.L., Finn, O.J., Lotze, M.T.: A phase I trial of a synthetic mucin peptide vaccine. Induction of specific immune reactivity in patients with adenocarcinoma. J. Surg. Res. 63(1), 298–304 (1996)

    Article  PubMed  CAS  Google Scholar 

  15. Gilewski, T., Adluri, S., Ragupathi, G., Zhang, S., Yao, T.J., Panageas, K., Moynahan, M., Houghton, A., Norton, L., Livingston, P.O.: Vaccination of high-risk breast cancer patients with mucin-1 (MUC1) keyhole limpet hemocyanin conjugate plus QS-21. Clin. Cancer Res. 6(5), 1693–1701 (2000)

    PubMed  CAS  Google Scholar 

  16. von Mensdorff-Pouilly, S., Petrakou, E., Kenemans, P., van Uffelen, K., Verstraeten, A.A., Snijdewint, F.G., van Kamp, G.J., Schol, D.J., Reis, C.A., Price, M.R., et al.: Reactivity of natural and induced human antibodies to MUC1 mucin with MUC1 peptides and n-acetylgalactosamine (GalNAc) peptides. Int. J. Cancer 86(5), 702–712 (2000)

    Article  Google Scholar 

  17. Finn, O.J., Jerome, K.R., Henderson, R.A., Pecher, G., Domenech, N., Magarian-Blander, J., Barratt-Boyes, S.M.: MUC-1 epithelial tumor mucin-based immunity and cancer vaccines. Immunol. Rev. 145, 61–89 (1995)

    Article  PubMed  CAS  Google Scholar 

  18. Wykes, M., MacDonald, K.P., Tran, M., Quin, R.J., Xing, P.X., Gendler, S.J., Hart, D.N., McGuckin, M.A.: MUC1 epithelial mucin (CD227) is expressed by activated dendritic cells. J. Leukoc. Biol. 72(4), 692–701 (2002)

    PubMed  CAS  Google Scholar 

  19. Brugger, W., Buhring, H.J., Grunebach, F., Vogel, W., Kaul, S., Muller, R., Brummendorf, T.H., Ziegler, B.L., Rappold, I., Brossart, P., et al.: Expression of MUC-1 epitopes on normal bone marrow: implications for the detection of micrometastatic tumor cells. J. Clin. Oncol. 17(5), 1535–1544 (1999)

    PubMed  CAS  Google Scholar 

  20. Fattorossi, A., Battaglia, A., Malinconico, P., Stoler, A., Andreocci, L., Parente, D., Coscarella, A., Maggiano, N., Perillo, A., Pierelli, L., et al.: Constitutive and inducible expression of the epithelial antigen MUC1 (CD227) in human T cells. Exp. Cell Res. 280(1), 107–118 (2002)

    Article  PubMed  CAS  Google Scholar 

  21. Moreno, M., Bontkes, H.J., Scheper, R.J., Kenemans, P., Verheijen, R.H., von Mensdorff-Pouilly, S.: High level of MUC1 in serum of ovarian and breast cancer patients inhibits huHMFG-1 dependent cell-mediated cytotoxicity (ADCC). Cancer Lett. 257(1), 47–55 (2007)

    Article  PubMed  CAS  Google Scholar 

  22. Sabbatini, P.J., Ragupathi, G., Hood, C., Aghajanian, C.A., Juretzka, M., Iasonos, A., Hensley, M.L., Spassova, M.K., Ouerfelli, O., Spriggs, D.R., et al.: Pilot study of a heptavalent vaccine-keyhole limpet hemocyanin conjugate plus QS21 in patients with epithelial ovarian, fallopian tube, or peritoneal cancer. Clin. Cancer Res. 13(14), 4170–4177 (2007)

    Article  PubMed  CAS  Google Scholar 

  23. Wandall, H.H., Blixt, O., Tarp, M.A., Pedersen, J.W., Bennett, E.P., Mandel, U., Ragupathi, G., Livingston, P.O., Hollingsworth, M.A., Taylor-Papadimitriou, J., et al.: Cancer biomarkers defined by autoantibody signatures to aberrant O-glycopeptide epitopes. Cancer Res. 70(4), 1306–1313 (2010)

    Article  PubMed  CAS  Google Scholar 

  24. Pedersen, J.W., Blixt, O., Bennett, E.P., Tarp, M.A., Dar, I., Mandel, U., Poulsen, S.S., Pedersen, A.E., Rasmussen, S., Jess, P., et al.: Seromic profiling of colorectal cancer patients with novel glycopeptide microarray. Int. J. Cancer 128(8), 1860–1871 (2011)

    Article  PubMed  CAS  Google Scholar 

  25. Tarp, M.A., Sorensen, A.L., Mandel, U., Paulsen, H., Burchell, J., Taylor-Papadimitriou, J., Clausen, H.: Identification of a novel cancer-specific immunodominant glycopeptide epitope in the MUC1 tandem repeat. Glycobiology 17(2), 197–209 (2007)

    Article  PubMed  CAS  Google Scholar 

  26. Kracun, S.K., Clo, E., Clausen, H., Levery, S.B., Jensen, K.J., Blixt, O.: Random glycopeptide bead libraries for seromic biomarker discovery. J. Proteome Res. 9(12), 6705–6714 (2010)

    Article  PubMed  CAS  Google Scholar 

  27. Wandall, H.H., Hassan, H., Mirgorodskaya, E., Kristensen, A.K., Roepstorff, P., Bennett, E.P., Nielsen, P.A., Hollingsworth, M.A., Burchell, J., Taylor-Papadimitriou, J., et al.: Substrate specificities of three members of the human UDP-N-acetyl-alpha-D-galactosamine:Polypeptide N-acetylgalactosaminyltransferase family, GalNAc-T1, -T2, and -T3. J. Biol. Chem. 272(38), 23503–23514 (1997)

    Article  PubMed  CAS  Google Scholar 

  28. Bennett, E.P., Hassan, H., Clausen, H.: cDNA cloning and expression of a novel human UDP-N-acetyl-alpha-D-galactosamine. Polypeptide N-acetylgalactosaminyltransferase, GalNAc-t3. J. Biol. Chem. 271(29), 17006–17012 (1996)

    Article  PubMed  CAS  Google Scholar 

  29. White, T., Bennett, E.P., Takio, K., Sorensen, T., Bonding, N., Clausen, H.: Purification and cDNA cloning of a human UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase. J. Biol. Chem. 270(41), 24156–24165 (1995)

    Article  PubMed  CAS  Google Scholar 

  30. Ikehara, Y., Kojima, N., Kurosawa, N., Kudo, T., Kono, M., Nishihara, S., Issiki, S., Morozumi, K., Itzkowitz, S., Tsuda, T., et al.: Cloning and expression of a human gene encoding an N-acetylgalactosamine-alpha2,6-sialyltransferase (ST6GalNAc I): a candidate for synthesis of cancer-associated sialyl-Tn antigens. Glycobiology 9(11), 1213–1224 (1999)

    Article  PubMed  CAS  Google Scholar 

  31. Kurosawa, N., Takashima, S., Kono, M., Ikehara, Y., Inoue, M., Tachida, Y., Narimatsu, H., Tsuji, S.: Molecular cloning and genomic analysis of mouse GalNAc alpha2, 6-sialyltransferase (ST6GalNAc I). J. Biochem. 127(5), 845–854 (2000)

    Article  PubMed  CAS  Google Scholar 

  32. Burchell, J., Gendler, S., Taylor-Papadimitriou, J., Girling, A., Lewis, A., Millis, R., Lamport, D.: Development and characterization of breast cancer reactive monoclonal antibodies directed to the core protein of the human milk mucin. Cancer Res. 47(20), 5476–5482 (1987)

    PubMed  CAS  Google Scholar 

  33. Beatson, R.E., Taylor-Papadimitriou, J., Burchell, J.M.: MUC1 immunotherapy. Immunotherapy 2(3), 305–327 (2010)

    Article  PubMed  CAS  Google Scholar 

  34. Burchell, J.M., Mungul, A., Taylor-Papadimitriou, J.: O-linked glycosylation in the mammary gland: changes that occur during malignancy. J. Mammary Gland Biol. Neoplasia 6(3), 355–364 (2001)

    Article  PubMed  CAS  Google Scholar 

  35. Wang, B.L., Springer, G.F., Carlstedt, S.C.: Quantitative computerized image analysis of Tn and T (Thomsen-Friedenreich) epitopes in prognostication of human breast carcinoma. J. Histochem. Cytochem. 45(10), 1393–1400 (1997)

    Article  PubMed  CAS  Google Scholar 

  36. Van Elssen, C.H., Frings, P.W., Bot, F.J., Van de Vijver, K.K., Huls, M.B., Meek, B., Hupperets, P., Germeraad, W.T., Bos, G.M.: Expression of aberrantly glycosylated Mucin-1 in ovarian cancer. Histopathology 57(4), 597–606 (2010)

    Article  PubMed  Google Scholar 

  37. Roda, J.M., Joshi, T., Butchar, J.P., McAlees, J.W., Lehman, A., Tridandapani, S., Carson 3rd, W.E.: The activation of natural killer cell effector functions by cetuximab-coated, epidermal growth factor receptor positive tumor cells is enhanced by cytokines. Clin. Cancer Res. 13(21), 6419–6428 (2007)

    Article  PubMed  CAS  Google Scholar 

  38. Dunne, J., Lynch, S., O’Farrelly, C., Todryk, S., Hegarty, J.E., Feighery, C., Doherty, D.G.: Selective expansion and partial activation of human NK cells and NK receptor-positive T cells by IL-2 and IL-15. J. Immunol. 167(6), 3129–3138 (2001)

    PubMed  CAS  Google Scholar 

  39. Herberman, R.B., Ortaldo, J.R., Mantovani, A., Hobbs, D.S., Kung, H.F., Pestka, S.: Effect of human recombinant interferon on cytotoxic activity of natural killer (NK) cells and monocytes. Cell. Immunol. 67(1), 160–167 (1982)

    Article  PubMed  CAS  Google Scholar 

  40. Roda, J.M., Parihar, R., Lehman, A., Mani, A., Tridandapani, S., Carson 3rd, W.E.: Interleukin-21 enhances NK cell activation in response to antibody-coated targets. J. Immunol. 177(1), 120–129 (2006)

    PubMed  CAS  Google Scholar 

  41. Ragupathi, G., Liu, N.X., Musselli, C., Powell, S., Lloyd, K., Livingston, P.O.: Antibodies against tumor cell glycolipids and proteins, but not mucins, mediate complement-dependent cytotoxicity. J. Immunol. 174(9), 5706–5712 (2005)

    PubMed  CAS  Google Scholar 

  42. Juhl, H., Helmig, F., Baltzer, K., Kalthoff, H., Henne-Bruns, D., Kremer, B.: Frequent expression of complement resistance factors CD46, CD55, and CD59 on gastrointestinal cancer cells limits the therapeutic potential of monoclonal antibody 17-1A. J. Surg. Oncol. 64(3), 222–230 (1997)

    Article  PubMed  CAS  Google Scholar 

  43. Yu, J., Caragine, T., Chen, S., Morgan, B.P., Frey, A.B., Tomlinson, S.: Protection of human breast cancer cells from complement-mediated lysis by expression of heterologous CD59. Clin. Exp. Immunol. 115(1), 13–18 (1999)

    Article  PubMed  CAS  Google Scholar 

  44. Geis, N., Zell, S., Rutz, R., Li, W., Giese, T., Mamidi, S., Schultz, S., Kirschfink, M.: Inhibition of membrane complement inhibitor expression (CD46, CD55, CD59) by siRNA sensitizes tumor cells to complement attack in vitro. Curr. Cancer Drug Targets 10(8), 922–931 (2010)

    Article  PubMed  CAS  Google Scholar 

  45. Price, M.R., Rye, P.D., Petrakou, E., Murray, A., Brady, K., Imai, S., Haga, S., Kiyozuka, Y., Schol, D., Meulenbroek, M.F., et al.: Summary report on the ISOBM TD-4 Workshop: analysis of 56 monoclonal antibodies against the MUC1 mucin. San Diego, Calif., November 17-23, 1996. Tumour Biol. 19(Suppl 1), 1–20 (1998)

    Article  PubMed  Google Scholar 

  46. Courtenay-Luck, N., Pegram, M.: Phase I study of the anti-MUC-1 antibody, huHMFG1 (AS1402), in patients with advanced breast cancer. Clin. Immunol. 123, S110–S111 (2007)

    Article  Google Scholar 

  47. Wahrenbrock, M.G., Varki, A.: Multiple hepatic receptors cooperate to eliminate secretory mucins aberrantly entering the bloodstream: are circulating cancer mucins the “tip of the iceberg”? Cancer Res. 66(4), 2433–2441 (2006)

    Article  PubMed  CAS  Google Scholar 

  48. Fan, X.N., Karsten, U., Goletz, S., Cao, Y.: Reactivity of a humanized antibody (hPankoMab) towards a tumor-related MUC1 epitope (TA-MUC1) with various human carcinomas. Pathol. Res. Pract. 206(8), 585–589 (2010)

    Article  PubMed  CAS  Google Scholar 

  49. Danielczyk, A., Stahn, R., Faulstich, D., Loffler, A., Marten, A., Karsten, U., Goletz, S.: PankoMab: a potent new generation anti-tumour MUC1 antibody. Cancer Immunol. Immunother. 55(11), 1337–1347 (2006)

    Article  PubMed  CAS  Google Scholar 

  50. Parham, P.: The genetic and evolutionary balances in human NK cell receptor diversity. Semin. Immunol. 20(6), 311–316 (2008)

    Article  PubMed  CAS  Google Scholar 

  51. Ferris, R.L., Jaffee, E.M., Ferrone, S.: Tumor antigen-targeted, monoclonal antibody-based immunotherapy: clinical response, cellular immunity, and immunoescape. J. Clin. Oncol. 28(28), 4390–4399 (2010)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to express our gratitude for the exceptional laboratory support provided by Karin U. Hansen. We thank Joyce Taylor-Papadimitriou and Joy Burchell for the generous gift of mAb HMFG2. This project was supported by the Novo Nordisk Foundation, the Danish Medical Research Council, the Danish Cancer Research Foundation, the Agnes and Poul Friis Foundation, the Danish Cancer Society, the University of Copenhagen (Program of Excellence), EU-FP7, Danish Agency for Science, Technology and Innovation (FTP).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anders E. Pedersen or Hans H. Wandall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavrsen, K., Madsen, C.B., Rasch, M.G. et al. Aberrantly glycosylated MUC1 is expressed on the surface of breast cancer cells and a target for antibody-dependent cell-mediated cytotoxicity. Glycoconj J 30, 227–236 (2013). https://doi.org/10.1007/s10719-012-9437-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-012-9437-7

Keywords

Navigation