Skip to main content
Log in

Thermodynamic stability of black holes surrounded by quintessence

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We study the thermodynamic stabilities of uncharged and charged black holes surrounded by quintessence (BHQ) by means of effective thermodynamic quantities. When the state parameter of quintessence \(\omega _q\) is appropriately chosen, the structures of BHQ are something like that of black holes in de Sitter space. Constructing the effective first law of thermodynamics in two different ways, we can derive the effective thermodynamic quantities of BHQ. Especially, these effective thermodynamic quantities also satisfy Smarr-like formulae. It is found that the uncharged BHQ is always thermodynamically unstable due to negative heat capacity, while for the charged BHQ there are phase transitions of the second order. We also show that there are several differences on the thermodynamic properties and critical behaviors of BHQ between the two ways we employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Here \(\kappa _{eff}\) is negative. Physically acceptable temperature should be positive, so we take the absolute value.

References

  1. Chamblin, A., Emparan, R., Johnson, C.V., Myers, R.C.: Charged AdS black holes and catastrophic holography. Phys. Rev. D 60, 064018 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  2. Chamblin, A., Emparan, R., Johnson, C.V., Myers, R.C.: Holography, thermodynamics, and fluctuations of charged AdS black holes. Phys. Rev. D 60, 104026 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  3. Wu, X.N.: Multicritical phenomena of Reissner–Nordström anti-de Sitter black holes. Phys. Rev. D 62, 124023 (2000)

    Article  ADS  Google Scholar 

  4. Banerjee, R., Modak, S.K., Roychowdhury, D.: A unified picture of phase transition: from liquid–vapour systems to AdS black holes. J. High Energy Phys. 2012, 1–11 (2012)

    Google Scholar 

  5. Wang, S., Wu, S.-Q., Xie, F., Dan, L.: The first law of thermodynamics of the (2+1)-dimensional Banados–Teitelboim–Zanelli black holes and Kerr-de Sitter spacetimes. Chin. Phys. Lett. 23, 1096 (2006)

    Article  ADS  Google Scholar 

  6. Kastor, D., Ray, S., Traschen, J.: Enthalpy and the mechanics of AdS black holes. Class. Quant. Gravit. 26, 195011 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Kastor, D., Ray, S., Traschen, J.: Smarr formula and an extended first law for Lovelock gravity. Class. Quant. Gravit. 27, 235014 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Dolan, B.P.: Pressure and volume in the first law of black hole thermodynamics. Class. Quant. Gravit. 28, 235017 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Dolan, B.P.: The cosmological constant and black-hole thermodynamic potentials. Class. Quant. Gravit. 28, 125020 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Kubizňák, D., Mann, R.B.: P–V criticality of charged AdS black holes. J. High Energy Phys. 2012, 1–25 (2012)

    MathSciNet  Google Scholar 

  11. Gunasekaran, S., Kubizňák, D., Mann, R.B.: Extended phase space thermodynamics for charged and rotating black holes and Born–Infeld vacuum polarization. J. High Energy Phys. 2012, 1–43 (2012)

    Article  Google Scholar 

  12. Zhao, R., Zhao, H.-H., Ma, M.-S., Zhang, L.-C.: On the critical phenomena and thermodynamics of charged topological dilaton AdS black holes. Eur. Phys. J. C 73, 1–10 (2013)

    Google Scholar 

  13. Wei, S.-W., Liu, Y.-X.: Critical phenomena and thermodynamic geometry of charged Gauss–Bonnet AdS black holes. Phys. Rev. D 87, 044014 (2013)

    Article  ADS  Google Scholar 

  14. Chen, S.-B., Liu, X.-F., Liu, C.-Q.: P–V criticality of an AdS black hole in f(R) gravity. Chin. Phys. Lett. 30, 060401 (2013)

    Article  ADS  Google Scholar 

  15. Zou, D.-C., Zhang, S.-J., Wang, B.: Critical behavior of born-infeld ads black holes in the extended phase space thermodynamics. Phys. Rev. D 89, 044002 (2014)

    Article  ADS  Google Scholar 

  16. Ma, M.-S., Liu, F., Zhao, R.: Continuous phase transition and critical behaviors of 3D black hole with torsion. Class. Quant. Gravit. 31, 095001 (2014)

    Article  ADS  MATH  Google Scholar 

  17. Dehghani, M.H., Kamrani, S., Sheykhi, A.: P–V criticality of charged dilatonic black holes. Phys. Rev. D 90, 104020 (2014)

    Article  ADS  Google Scholar 

  18. Zhang, M., Yang, Z.-Y., Zou, D.-C., Xu, W., Yue, R.-H.: P–V criticality of AdS black hole in the Einstein–Maxwell-power-Yang–Mills gravity. Gen. Relativ. Gravit. 47, 1–15 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Altamirano, N., Kubizňák, D., Mann, R.B., Sherkatghanad, Z.: Thermodynamics of rotating black holes and black rings: phase transitions and thermodynamic volume. Galaxies 2, 89 (2014)

    Article  ADS  MATH  Google Scholar 

  20. Zhao, H.-H., Zhang, L.-C., Ma, M.-S., Zhao, R.: P–V criticality of higher dimensional charged topological dilaton de Sitter black holes. Phys. Rev. D 90, 064018 (2014)

    Article  ADS  Google Scholar 

  21. Zhang, L.-C., Ma, M.-S., Zhao, H.-H., Zhao, R.: Thermodynamics of phase transition in higher-dimensional Reissner–Nordström-de Sitter black hole. Eur. Phys. J. C 74, 1–10 (2014)

    Google Scholar 

  22. Ma, M.-S., Zhao, H.-H., Zhang, L.-C., Zhao, R.: Existence condition and phase transition of Reissner–Nordström-de Sitter black hole. Int. J. Mod. Phys. A 29, 1450050 (2014)

    Article  ADS  Google Scholar 

  23. Kiselev, V.V.: Quintessence and black holes. Class. Quant. Gravit. 20, 1187 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Chen, S.B., Jing, J.L.: Quasinormal modes of a black hole surrounded by quintessence. Class. Quant. Gravit. 22, 4651 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Zhang, Y., Gui, Y.: Quasinormal modes of gravitational perturbation around a schwarzschild black hole surrounded by quintessence. Class. Quant. Gravit. 23, 6141 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Chen, S.B., Wang, B., Su, R.K.: Hawking radiation in a \(d\)-dimensional static spherically symmetric black hole surrounded by quintessence. Phys. Rev. D 77, 124011 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  27. Wei, Y.-H., Chu, Z.-H.: Thermodynamic properties of a Reissner–Nordström quintessence black hole. Chin. Phys. Lett. 28, 100403 (2011)

    Article  ADS  Google Scholar 

  28. Azreg-Aïnou, M., Rodrigues, M.E.: Thermodynamical, geometrical and poincaré methods for charged black holes in presence of quintessence. J. High Energy Phys. 2013, 1–26 (2013)

    Article  Google Scholar 

  29. Azreg-Aïnou, M.: Black hole thermodynamics: no inconsistency via the inclusion of the missing P–V terms. Phys. Rev. D 91, 064049 (2015)

    Article  ADS  Google Scholar 

  30. Li, G.-Q.: Effects of dark energy on P–V criticality of charged AdS black holes. Phys. Lett. B 735, 256–260 (2014)

    Article  ADS  Google Scholar 

  31. Azreg-Aïnou, M.: Charged de Sitter-like black holes: quintessence-dependent enthalpy and new extreme solutions. Eur. Phys. J. C 75, 1–13 (2015)

    Article  ADS  Google Scholar 

  32. Wang, B.-B., Huang, C.-G.: Thermodynamics of Reissner–Nordström-de Sitter black hole in York’s formalism. Class. Quant. Gravit. 19, 2491 (2002)

    Article  ADS  MATH  Google Scholar 

  33. Gomberoff, A., Teitelboim, C.: de sitter black holes with either of the two horizons as a boundary. Phys. Rev. D 67, 104024 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  34. Sekiwa, Y.: Thermodynamics of de sitter black holes: thermal cosmological constant. Phys. Rev. D 73, 084009 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  35. Saida, H.: To what extent is the entropy-area law universal? Multi-horizon and multi-temperature spacetime may break the entropy-area law. Prog. Theor. Phys. 122, 1515–1552 (2009)

    Article  ADS  MATH  Google Scholar 

  36. Urano, M., Tomimatsu, A., Saida, H.: The mechanical first law of black hole spacetimes with a cosmological constant and its application to the Schwarzschild-de Sitter spacetime. Class. Quant. Gravit. 26, 105010 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Dolan, B.P., Kastor, D., Kubizňák, D., Mann, R.B., Traschen, J.: Thermodynamic volumes and isoperimetric inequalities for de Sitter black holes. Phys. Rev. D 87, 104017 (2013)

    Article  ADS  Google Scholar 

  38. Fernando, S.: Cold, ultracold and nariai black holes with quintessence. Gen. Relativ. Gravit. 45, 2053–2073 (2013)

    Article  ADS  MATH  Google Scholar 

  39. Kastor, D., Traschen, J.: Cosmological multi-black-hole solutions. Phys. Rev. D 47, 5370–5375 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  40. Cai, R.-G., Ji, J.-Y., Soh, K.-S.: Action and entropy of black holes in spacetimes with a cosmological constant. Class. Quant. Gravit. 15, 2783 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Bhattacharya, S.: A note on entropy of de Sitter black holes. Eur. Phys. J. C 76, 1–12 (2016)

    Article  Google Scholar 

  42. Nariai, H.: On a new cosmological solution of einstein’s field equations of gravitation. Gen. Relativ. Gravit. 31, 963–971 (1999)

    Article  ADS  MATH  Google Scholar 

  43. Ginsparg, P., Perry, M.J.: Semiclassical perdurance of de sitter space. Nucl. Phys. B 222, 245–268 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  44. Bousso, R., Hawking, S.W.: Pair creation of black holes during inflation. Phys. Rev. D 54, 6312–6322 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Fernando, S.: Nariai black holes with quintessence. Mod. Phys. Lett. A 28, 1350189 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  46. Davies, P.C.W.: The thermodynamic theory of black holes. Proc. R. Soc. Lond. A 353, 499–521 (1977)

    Article  ADS  Google Scholar 

  47. Callen, H.B.: Thermodynamics and an Introduction to Thermostatistics. Wiley, New York (2006)

    MATH  Google Scholar 

  48. Li, H.-F., Ma, M.-S., Ma, Y.-Q.: Thermodynamic properties of black holes in de Sitter space. Mod. Phys. Lett. A 32, 1750017 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China (Grant Nos. 11605107, 11475108) and by the Doctoral Sustentation Fund of Shanxi Datong University (2011-B-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng-Sen Ma.

Appendix A: Complete expressions of \(C_v\) and \(C_p\)

Appendix A: Complete expressions of \(C_v\) and \(C_p\)

The complete forms of Eq. (4.11) is:

$$\begin{aligned} C_v=\frac{2 \pi x^2 (x+1)^2 r_q^2 }{A(x)}\left[ \left( x^6+x^2\right) r_q^2-Q^2 \left( x^6+2 x^5+2 x+1\right) \right] , \end{aligned}$$
(A.1)

where

$$\begin{aligned} A(x)= & {} Q^2 \left( 3 x^{10}+10 x^9+10 x^8-x^6-8 x^5-x^4+10 x^2+10 x+3\right) \nonumber \\&+\,x^2 \left( x^8+4 x^7-6 x^4+4 x+1\right) r_q^2. \end{aligned}$$
(A.2)

The complete forms of Eq. (4.12) is:

$$\begin{aligned} C_p= & {} -\frac{2 \pi x^2 (x+1)^2 r_q^2}{B(x)} \times \left[ Q^2 x^2 \left( -2 x^6+3 x^5+15 x^4+8 x^3+15 x^2+3 x-2\right) r_q^2 \right. \nonumber \\&+ \left. Q^4 \left( x^8+3 x^7-7 x^6-20 x^5-20 x^4-20 x^3-7 x^2+3 x+1\right) \right. \nonumber \\&+ \left. x^4 \left( x^4-4 x^3-4 x+1\right) r_q^4\right] , \end{aligned}$$
(A.3)

where

$$\begin{aligned} B(x)= & {} -\,2 Q^2 x^2 \left( 2 x^{10}+8 x^9+9 x^8-6 x^7-27 x^6-48 x^5-27 x^4-6 x^3+9 x^2+8 x+2\right) r_q^2 \nonumber \\&+\, x^4 \left( x^8+4 x^7-4 x^5-14 x^4-4 x^3+4 x+1\right) r_q^4+Q^4 \left( 3 x^{12}+16 x^{11}+30 x^{10} \right. \nonumber \\&+ \left. 20 x^9-30 x^8-132 x^7-210 x^6-132 x^5-30 x^4+20 x^3+30 x^2+16 x+3\right) \end{aligned}$$
(A.4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, MS., Zhao, R. & Ma, YQ. Thermodynamic stability of black holes surrounded by quintessence. Gen Relativ Gravit 49, 79 (2017). https://doi.org/10.1007/s10714-017-2245-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-017-2245-4

Keywords

Navigation