Skip to main content
Log in

Metric measure space as a framework for gravitation

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this manuscript, we show how conformal invariance can be incorporated in a classical theory of gravitation, in the context of metric measure space. Metric measure space involves a geometrical scalar f, dubbed as density function, which here appears as a conformal degree of freedom. In this framework, we present conformally invariant field equations, the relevant identities and geodesic equations. In metric measure space, the volume element and accordingly the operators with integral based definitions are modified. For instance, the divergence operator in this space differs from the Riemannian one. As a result, a gravitational theory formulated in this space has a generalized second Bianchi identity and a generalized conservation of energy-momentum tensor. It is shown how, by using the generalized identity for conservation of energy-momentum tensor, one can obtain a conformally invariant geodesic equation. By comparison of the geodesic equations in metric measure space with the Bohmian trajectories, in both relativistic and non-relativistic regimes, a relation between density function f and the quantum potential is proposed. This suggests metric measure space to be considered as a suitable framework for geometric description of Bohm’s quantum mechanics. On the other hand, as it is known, Weyl geometry is one of the main approaches to construct conformally invariant gravitational models. Regarding the fact that the connection in the integrable Weyl space is modified and in metric measure space remains the same as it is in the Riemann space, the mathematical analogy between these two spaces is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheeger, J., Colding, T.H.: J. Differ. Geom. 46(3), 406–480 (1997)

    MathSciNet  Google Scholar 

  2. Cheeger, J., Colding, T.H.: J. Differ. Geom. 54(1), 13–57 (2000)

    MathSciNet  Google Scholar 

  3. Perelman, G.Y.: arXiv:math.DG/0211159 (2002)

  4. Lott, J., Villani, C.: Ann. Math. 169, 903–991 (2009)

    Article  MathSciNet  Google Scholar 

  5. Sturm, K.T.: Acta Math. 196(1), 65–131 (2006)

    Article  MathSciNet  Google Scholar 

  6. Sturm, K.T.: Acta Math. 196(1), 133–177 (2006)

    Article  MathSciNet  Google Scholar 

  7. Case, J.S.: Int. J. Math. 23(10), 1250110 (2012)

    Article  MathSciNet  Google Scholar 

  8. Chang, S.Y.A., Gursky, M.J., Yang, P.: Proc. Natl. Acad. Sci. USA 103(8), 2535–2540 (2006). (electronic)

    Article  ADS  MathSciNet  Google Scholar 

  9. Rahmanpour, N., Shojaie, H.: Gen. Relativ. Gravit. 47, 123 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  10. Graf, W.: Phys. Rev. D 67, 024002 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  11. Chang, S.Y.A., Gursky, M.J., Yang, P.: Conformal invariants associated to a measure, I: pointwise invariants. Preprint (2007)

  12. Chang, S.Y.A., Gursky, M.J., Yang, P.: Pac. J. Math. 253(1), 37–56 (2011)

    Article  MathSciNet  Google Scholar 

  13. Maldacena, J.M.: Adv. Theor. Math. Phys. 2, 231–252 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  14. Polyakov, A.M.: Gauge Fields and Strings, Volume 3 of Contemporary Concepts in Physics. CRC Press, Boca Raton (1987)

    Google Scholar 

  15. Zumino, B.: Lectures on elementary particles and quantum field theory (1970 Brandeis University Summer Institute in Theoretical Physics)

  16. Blagojevic, M.: Gravitation and Gauge Symmetry. Institute of Physics Publishing, Philadelphia (2002)

    Book  MATH  Google Scholar 

  17. Faci, S.: EPL 101, 31002 (2013)

    Article  ADS  Google Scholar 

  18. Flanagan, E.E.: Class. Quantum Grav. 21, 3817–3829 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  19. Faraoni, V.: Cosmology in Scalar–Tensor Gravity. Kluwer Academic Publishers, Dordrecht (2004)

    Book  MATH  Google Scholar 

  20. Faraoni, V., Gunzig, E., Nardone, P.: Fund. Cosm. Phys. 20, 121 (1999)

    ADS  Google Scholar 

  21. Weyl, H.: Ann. Phys. (Leipzig) 59, 101–133 (1919)

    Article  ADS  Google Scholar 

  22. Dirac, P.A.M., Soc, R.: Lond. A 333, 403–418 (1973)

    Article  Google Scholar 

  23. Rosen, N.: Found. Phys. 12, 213–247 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  24. Canuto, V.M., Adams, P.J., Hsieh, S.-H., Tsiang, E.: Phys. Rev. D 16, 1643–1663 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  25. Canuto, V.M., Goldman, I.: Nature 296, 709–713 (1982)

    Article  ADS  Google Scholar 

  26. Bars, I., Steinhardt, P.J., Turok, N.: Phys. Rev. D 89, 043515–043530 (2014)

    Article  ADS  Google Scholar 

  27. Scholz, E.: Gen. Relativ. Gravit. 47, 7 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  28. Dicke, R.H.: Phys. Rev. 125, 2163–2167 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  29. Canuto, V.M., Hsieh, S.-H., Adams, P.J.: Phys. Rev. D 18, 3577–3580 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  30. Maeder, A., Bouvier, P.: Astron. Astrophys. 73, 82–89 (1979)

    ADS  Google Scholar 

  31. Scholz, E.: Found. Phys. 39, 45–72 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  32. Deser, S.: Ann. Phys. 59, 248 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  33. Zee, A.: Phys. Rev. Lett. 42, 417 (1979)

    Article  ADS  Google Scholar 

  34. Zee, A.: Phys. Rev. D 23, 858 (1981)

    Article  ADS  Google Scholar 

  35. Ohanian, H.C.: arXiv:1502.00020 [gr-qc] (2015)

  36. Kleinert, H.: EJTP 11(30), 1–8 (2014)

    MathSciNet  Google Scholar 

  37. Shojai, A., Shojai, F.: Phys. Scr. 64(5), 413–416 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  38. Bohm, D.: Phys. Rev. 85, 166 (1952)

    Article  ADS  Google Scholar 

  39. Bohm, D.: Phys. Rev. 85, 180 (1952)

    Article  ADS  Google Scholar 

  40. Holland, P.R.: The Quantum Theory of Motion. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  41. Licata, I., Fiscaletti, D.: Quantum Potential: Physics, Geometry and Algebra. Springer, New York (2014)

    Book  MATH  Google Scholar 

  42. Carroll, R.W.: Fluctuations, Information, Gravity and the Quantum Potential. Springer, New York (2006)

    Book  MATH  Google Scholar 

  43. Santamato, E.: Phys. Rev. D 29, 216 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  44. Santamato, E., De Martini, F.: Found Phys. 43, 631–641 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  45. Santamato, E., De Martini, F.: Found. Phys. 45, 858–873 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  46. Novello, M., Salim, J.M., Falciano, F.T.: Int. J. Geom. Methods Mod. Phys. 8, 87–98 (2011)

    Article  MathSciNet  Google Scholar 

  47. Weyl, H.: Sitz. Ber. Preuss. Akad. Wiss. 465–480 (1918)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nafiseh Rahmanpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmanpour, N., Shojaie, H. Metric measure space as a framework for gravitation. Gen Relativ Gravit 48, 122 (2016). https://doi.org/10.1007/s10714-016-2123-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-016-2123-5

Keywords

Navigation