Skip to main content
Log in

Inflation with the Starobinsky potential in loop quantum cosmology

  • Letter
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

A self-consistent pre-inflationary extension of the inflationary scenario with the Starobinsky potential, favored by Planck data, is studied using techniques from loop quantum cosmology (LQC). The results are compared with the quadratic potential previously studied. Planck scale completion of the inflationary paradigm and observable signatures of LQC are found to be robust under the change of the inflation potential. The entire evolution, from the quantum bounce all the way to the end of inflation, is compatible with observations. Occurrence of desired slow-roll phase is almost inevitable and natural initial conditions exist for both the background and perturbations for which the resulting power spectrum agrees with recent observations. There exist initial data for which the quantum gravitational corrections to the power spectrum are potentially observable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Notes

  1. For other approaches to bouncing models see, e.g. [58]. Also see [9] (and references therein) for a recent review.

  2. Here, in order to compute the mass parameter, we have assumed that the LQC corrections to the power spectrum are extremely small at the pivot scale \(k_*\). This assumption does indeed hold in the numerical results discussed here. However, in principle, this is inconsistent and a proper way to address this would require significant numerical work along the lines of [29]. There the authors find that, while this assumption is conceptually important, it leaves the main results practically unchanged for the quadratic potential; we expect the same to be true for the Starobinsky potential.

  3. This issue could be resolved for potentials, which are related to Starobinsky potential via \(\alpha \)-attractors, that have a plateau for a finite range in \(\phi \). For such potentials the space of initial conditions at the bounce will be compact and a regular measure suffices to talk about probabilities. For instance, the Higgs potential satisfies this criterion as it has a plateau region in the center and exponential walls on both sides.

  4. Here, we only show existence of at least one state that leads to power suppression. It should be noted that there also exist states that show power enhancement for \(\ell <30\). As of now, these states are at the same footing as the one chosen here that shows power suppression. The physical criteria to select states resulting in power suppression and the issue of their uniqueness are currently being investigated [39].

References

  1. Planck Collaboration, Ade, P., et al.: Planck 2015. XX. Constraints on inflation, arXiv:1502.02114

  2. Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang. Phys. Rev. Lett. 96, 141301 (2006). doi:10.1103/PhysRevLett.96.141301. [gr-qc/0602086]

  3. Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang: improved dynamics. Phys. Rev. D 74, 084003 (2006). doi:10.1103/PhysRevD.74.084003. [gr-qc/0607039]

  4. Ashtekar, A., Singh, P.: Loop quantum cosmology: a status report. Class. Quantum Grav. 28, 213001 (2011). arXiv:1108.0893

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Khoury, J., Ovrut, B.A., Steinhardt, P.J., Turok, N.: The Ekpyrotic universe: colliding branes and the origin of the hot big bang. Phys. Rev. D 64, 123522 (2001). arXiv:hep-th/0103239

    Article  ADS  MathSciNet  Google Scholar 

  6. Gasperini, M., Veneziano, G.: The Pre-big bang scenario in string cosmology. Phys. Rept. 373, 1–212 (2003). arXiv:hep-th/0207130

    Article  ADS  MathSciNet  Google Scholar 

  7. Khoury, J., Ovrut, B.A., Seiberg, N., Steinhardt, P.J., Turok, N.: From big crunch to big bang. Phys. Rev. D 65, 086007 (2002). arXiv:hep-th/0108187

    Article  ADS  Google Scholar 

  8. Kallosh, R., Kofman, L., Linde, A.D., Tseytlin, A.A.: BPS branes in cosmology. Phys. Rev. D 64, 123524 (2001). arXiv:hep-th/0106241

    Article  ADS  MathSciNet  Google Scholar 

  9. Battefeld, D., Peter, P.: A critical review of classical bouncing cosmologies. Phys. Rept. 571, 1–66 (2015). arXiv:1406.2790

    Article  ADS  MathSciNet  Google Scholar 

  10. Ashtekar, A., Kaminski, W., Lewandowski, J.: Quantum field theory on a cosmological, quantum space–time. Phys. Rev. D 79, 064030 (2009). arXiv:0901.0933

    Article  ADS  Google Scholar 

  11. Agullo, I., Ashtekar, A., Nelson, W.: Extension of the quantum theory of cosmological perturbations to the Planck era. Phys. Rev. D 87(4), 043507 (2013). arXiv:1211.1354

    Article  ADS  Google Scholar 

  12. Ashtekar, A., Sloan, D.: Loop quantum cosmology and slow roll inflation. Phys. Lett. B 694, 108 (2011). doi:10.1016/j.physletb.2010.09.058. [arXiv:0912.4093 [gr-qc]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Ashtekar, A., Sloan, D.: Probability of inflation in loop quantum cosmology. Gen. Rel. Grav. 43, 3619–3655 (2011). arXiv:1103.2475

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Corichi, A., Karami, A.: Measure problem in slow roll inflation and loop quantum cosmology. Phys. Rev. D 83, 104006 (2011). doi:10.1103/PhysRevD.83.104006. [arXiv:1011.4249 [gr-qc]]

    Article  ADS  Google Scholar 

  15. Agullo, I., Ashtekar, A., Nelson, W.: The pre-inflationary dynamics of loop quantum cosmology: confronting quantum gravity with observations. Class. Quantum Grav. 30, 085014 (2013). arXiv:1302.0254

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Schmidt, F., Hui, L.: Cosmic microwave background power asymmetry from non-Gaussian modulation. Phys. Rev. Lett. 110, 011301 (2013). arXiv:1210.2965, [Erratum: Phys. Rev. Lett. 110,059902(2013)]

    Article  ADS  Google Scholar 

  17. Agullo, I.: Loop quantum cosmology, non-Gaussianity, and CMB power asymmetry. arXiv:1507.04703

  18. Taveras, V.: Corrections to the Friedmann equations from LQG for a universe with a free scalar field. Phys. Rev. D 78, 064072 (2008). arXiv:0807.3325

    Article  ADS  MathSciNet  Google Scholar 

  19. Singh, P.: Are loop quantum cosmos never singular? Class. Quantum Grav. 26, 125005 (2009). arXiv:0901.2750

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Ashtekar, A., Gupt, B.: Generalized effective description of loop quantum cosmology. Phys. Rev. D 92(8), 084060 (2015). arXiv:1509.08899

    Article  ADS  MathSciNet  Google Scholar 

  21. Meissne, K.A.: Black hole entropy in loop quantum gravity. Class. Quantum Grav. 21, 5245–5252 (2004). arXiv:gr-qc/0407052

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Domagala, M., Lewandowski, J.: Black hole entropy from quantum geometry. Class. Quantum Grav. 21, 5233–5244 (2004). arXiv:gr-qc/0407051

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Barrow, J.D.: The premature recollapse problem in closed inflationary universes. Nucl. Phys. B 296, 697–709 (1988)

    Article  ADS  Google Scholar 

  24. Barrow, J.D., Cotsakis, S.: Inflation and the conformal structure of higher order gravity theories. Phys. Lett. B 214, 515 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  25. Maeda, K i: Towards the Einstein–Hilbert action via conformal transformation. Phys. Rev. D 39, 3159 (1989). doi:10.1103/PhysRevD.39.3159

    Article  ADS  MathSciNet  Google Scholar 

  26. Starobinsky, A.A., Tsujikawa, S., Yokoyama, J.: Cosmological perturbations from multifield inflation in generalized Einstein theories. Nucl. Phys. B 610, 383–410 (2001). arXiv:astro-ph/0107555

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. De Felice, A., Tsujikawa, S.: f(R) theories, Living Rev. Rel. 13(3) (2010). doi:10.12942/lrr-2010-3. [arXiv:1002.4928 [gr-qc]]

  28. Galante, M., Kallosh, R., Linde, A., Roest, D.: Unity of cosmological inflation attractors. Phys. Rev. Lett. 114(14), 141302 (2015). arXiv:1412.3797

    Article  ADS  Google Scholar 

  29. Agullo, I., Morris, N .A.: Detailed analysis of the predictions of loop quantum cosmology for the primordial power spectra. Phys. Rev. D 92(12), 124040 (2015). doi:10.1103/PhysRevD.92.124040. [arXiv:1509.05693 [gr-qc]]

    Article  ADS  Google Scholar 

  30. Fernandez-Mendez, M., Mena Marugan, G.A., Olmedo, J.: Hybrid quantization of an inflationary universe. Phys. Rev. D 86, 024003 (2012). arXiv:1205.1917

    Article  ADS  Google Scholar 

  31. Gomar, L .C., Martn-Benito, M., Marugn, G .A .M.: Gauge-invariant perturbations in hybrid quantum cosmology. JCAP 1506(06), 045 (2015). arXiv:1503.03907

    Article  MathSciNet  Google Scholar 

  32. Barrau, A., Cailleteau, T., Grain, J., Mielczarek, J.: Observational issues in loop quantum cosmology. Class. Quantum Grav. 31, 053001 (2014). arXiv:1309.6896

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Cailleteau, T., Mielczarek, J., Barrau, A., Grain, J.: Anomaly-free scalar perturbations with holonomy corrections in loop quantum cosmology. Class. Quantum Grav. 29, 095010 (2012). arXiv:1111.3535

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Barrau, A., Bojowald, M., Calcagni, G., Grain, J., Kagan, M.: Anomaly-free cosmological perturbations in effective canonical quantum gravity. JCAP 1505(05), 051 (2015). arXiv:1404.1018

    Article  ADS  MathSciNet  Google Scholar 

  35. Bojowald, M., Paily, G.M.: Deformed general relativity and effective actions from loop quantum gravity. Phys. Rev. D 86, 104018 (2012). arXiv:1112.1899

    Article  ADS  Google Scholar 

  36. Agullo, I., Ashtekar, A., Gupt, B.: LQC phenomenology from non-semiclassical quantum states (in preparation)

  37. Bonga, B., Gupt, B.: Phenomenological investigation of a quantum gravity extension of inflation with the Starobinsky potential. Phys. Rev. D 93(6), 063513 (2016). doi:10.1103/PhysRevD.93.063513. [arXiv:1510.04896 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  38. Corichi, A., Sloan, D.: Inflationary attractors and their measures. Class. Quantum Grav. 31, 062001 (2014). doi:10.1088/0264-9381/31/6/062001. [arXiv:1310.6399 [gr-qc]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Ashtekar, A., Gupt, B.: (in preparation) (2015)

  40. Zhang, X., Ma, Y.: Extension of loop quantum gravity to \(f(R)\) theories. Phys. Rev. Lett. 106, 171301 (2011a). arXiv:1101.1752

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to Abhay Ashtekar for his constant guidance, extensive discussions and feedback at various stages of the preparation of this manuscript, and to Ivan Agullo for extensive discussions. We would also like to thank Aurelien Barrau and Parampreet Singh for fruitful discussions as well as the anonymous referees for their insightful comments which led to improvement in the manuscript. This work was supported by NSF Grant PHY-1505411, the Eberly research funds of Penn State and a Frymoyer Fellowship to BB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Béatrice Bonga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonga, B., Gupt, B. Inflation with the Starobinsky potential in loop quantum cosmology. Gen Relativ Gravit 48, 71 (2016). https://doi.org/10.1007/s10714-016-2071-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-016-2071-0

Keywords

Navigation