Skip to main content
Log in

Curvaton reheating mechanism in a scale invariant two measures theory

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The curvaton reheating mechanism in a scale invariant two measures theory defined in terms of two independent non-Riemannian volume forms (alternative generally covariant integration measure densities) on the space-time manifold which are metric independent is studied. The model involves two scalar matter fields, a dilaton, that transforms under scale transformations and it will be used also as the inflaton of the model and another scalar, which does not transform under scale transformations and which will play the role of a curvaton field. Potentials of appropriate form so that the pertinent action is invariant under global Weyl-scale symmetry are introduced. Scale invariance is spontaneously broken upon integration of the equations of motion. After performing transition to the physical Einstein frame we obtain: (1) For given value of the curvaton field an effective potential for the scalar field with two flat regions for the dilaton which allows for a unified description of both early universe inflation as well as of present dark energy epoch; (2) In the phase corresponding to the early universe, the curvaton has a constant mass and can oscillate decoupled from the dilaton and that can be responsible for both reheating and perturbations in the theory. In this framework, we obtain some interesting constraints on different parameters that appear in our model; (3) For a definite parameter range the model possesses a non-singular “emergent universe” solution which describes an initial phase of evolution that precedes the inflationary phase. Finally we discuss generalizations of the model, through the effect of higher curvature terms, where inflaton and curvaton can have coupled oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. In D space-time dimensions one can always represent a maximal rank antisymmetric gauge field \(A_{\mu _1\ldots \mu _{D-1}}\) in terms of D auxiliary scalar fields \(\phi ^i\) (\(i=1,\ldots ,D\)) in the form: \(A_{\mu _1\ldots \mu _{D-1}} = \frac{1}{D}\varepsilon _{i i_1\ldots i_{D-1}} \phi ^i \partial _{\mu _1}\phi ^{i_1}\ldots \partial _{\mu _{D-1}}\phi ^{i_{D-1}}\), so that its (dual) field-strength \(\Phi (A) = \frac{1}{D!}\varepsilon _{i_1\ldots i_D} \varepsilon ^{\mu _1\ldots \mu _D} \partial _{\mu _1}\phi ^{i_1}\ldots \partial _{\mu _D}\phi ^{i_D}\).

References

  1. Kolb, E.W., Turner, M.S.: The early universe. Addison Wesley, Boston (1990)

    MATH  Google Scholar 

  2. Linde, A.: Particle physics and inflationary cosmology. Harwood, Chur (1990)

    Book  Google Scholar 

  3. Guth, A.: The inflationary universe. Random House, Vintage (1998)

    Google Scholar 

  4. Liddle, A.R., Lyth, D.H.: Cosmological inflation and large-scale structure. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  5. Dodelson, S.: Modern cosmology. Academic Press, Waltham (2003)

    Google Scholar 

  6. Weinberg, S.: Cosmology. Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

  7. Mukhanov, V.: Physical foundations of cosmology. Cambride University Press, Cambride (2005)

    Book  MATH  Google Scholar 

  8. Liddle, A.R., Lyth, D.H.: The primordial density perturbations—cosmology, inflation and origin of structure. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  9. Turner, M.S.: In: Gibson, B.K., Axelrod, T.S., Putman, M.E. (eds.) Third Stromle Symposium “The Galactic Halo”, ASP Conference Series. vol. 666 (1999)

  10. Bahcall, N., Ostriker, J.P., Perlmutter, S.J., Steinhardt, P.J.: Science 284, 1481 (1999)

    Article  ADS  Google Scholar 

  11. Peebles, P.J.E., Ratra, B.: Rev. Mod. Phys. 75, 559 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Riess, A., et al.: Astron. J. 116, 1009–1038 (1998)

    Article  ADS  Google Scholar 

  13. Perlmutter, S., et al.: Astrophys. J. 517, 565–586 (1999)

    Article  ADS  Google Scholar 

  14. Peebles, P.J.E., Vilenkin, A.: Phys. Rev. D59, 063505 (1999)

    ADS  Google Scholar 

  15. Nojiri, S., Odintsov, S.: Phys. Rev. D68, 123512 (2003) (arxiv:hep-th/0307288)

  16. Cognola, G., Elizalde, E., Nojiri, S., Odintsov, S.D., Sebastianiand, L., Zerbini, S.: Phys. Rev. D77, 046009 (2008) (0712.4017 [hep-th]), and references therein

  17. Appleby, S.A., Battye, R.A., Starobinsky, A.A.: JCAP 1006, 005 (2010) (arxiv:0909.1737 [astro-ph])

  18. Chiba, T., Okabe, T., Yamaguchi, M.: Phys. Rev. D62, 023511 (2000) (arxiv:astro-ph/9912463)

  19. Armendariz-Picon, C., Mukhanov, V., Steinhardt, P.: Phys. Rev. Lett. 85, 4438 (2000) (arxiv:astro-ph/0004134)

  20. Armendariz-Picon, C., Mukhanov, V., Steinhardt, P.: Phys. Rev. D63, 103510 (2001) (arxiv:astro-ph/0006373)

  21. Chiba, T.: Phys. Rev. D66, 063514 (2002) (arxiv:astro-ph/0206298)

  22. Saitou, R., Nojiri, S.: Eur. Phys. J. C71, 1712 (2011) (arxiv:1104.0558 [hep-th])

  23. Wetterich, C.: Phys. Rev. D89, 024005 (2014) (arxiv:1308.1019 [astro-ph])

  24. Wali Hossain, M., Myrzakulov, R., Sami, M., Saridakis, E.N.: Phys. Rev. D90, 023512 (2014) (arxiv:1402.6661 [gr-qc])

  25. Guendelman, E., Herrera, R., Labrana, P., Nissimov, E., Pacheva, S.: Gen. Relativ. Gravit. 472, 10 (2015) (arxiv:1408.5344 [gr-qc])

  26. del Campo, S., Guendelman, E., Herrera, R., Labrana, P.: JCAP 1006, 026 (2010) (arxiv:1006.5734 [astro-ph.CO])

  27. Guendelman, E.I., Labrana, P.: Int. J. Mod. Phys. D22, 1330018 (2013) (arxiv:1303.7267 [astro-ph.CO])

  28. Guendelman, E.I.: Mod. Phys. Lett. A14, 1043-1052 (1999) (arxiv:gr-qc/9901017)

  29. Guendelman, E.I.: In: “Energy densities in the universe”, Proceedings of Rencontres de Moriond, Les Arcs (2000) (arxiv:gr-qc/0004011)

  30. Guendelman, E.I., Kaganovich, A.: Phys. Rev. D60, 065004 (1999) (arxiv:gr-qc/9905029)

  31. Guendelman, E.I., Katz, O.: Class. Quantum Gravity 20, 1715-1728 (2003) (arxiv:gr-qc/0211095)

  32. Guendelman, E.I., Singleton, D., Yongram, N.: JCAP 1211, 044 (2012) (arxiv:1205.1056 [gr-qc])

  33. Guendelman, E.I., Nishino, H., Rajpoot, S.: Phys. Lett. 732B, 156 (2014) (arxiv:1403.4199 [hep-th])

  34. Nishino, H., Rajpoot, S.: Phys. Lett. 736B, 350-355 (2014) (arxiv:1411.3805 [hep-th])

  35. Guendelman, E.: Class. Quantum Gravity 17, 3873-3880 (2000) (arxiv:hep-th/0005041)

  36. Guendelman, E.: Phys. Rev. D63, 046006 (2001) (arxiv:hep-th/00051232)

  37. Guendelman, E., Kaganovich, A., Nissimov, E., Pacheva, S.: Phys. Rev. D66, 046003 (2002) (arxiv:hep-th/0203024)

  38. Guendelman, E., Nissimov, E., Pacheva, S., Vasihoun, M.: Bulg. J. Phys. 40, 121-126 (2013) (arxiv:1310.2772 [hep-th])

  39. Guendelman, E., Nissimov, E., Pacheva, S., Vasihoun, M.: Bulg. J. Phys. 41, 123-129 (2014) (arxiv:1404.4733 [hep-th])

  40. Struckmeier, J.: Phys. Rev. D91, 085030 (2015) (arxiv:1411.1558 [gr-qc])

  41. del Campo, S., Guendelman, E., Kaganovich, A., Herrera, R., Labrana, P.: Phys. Lett. 699B, 211 (2011) (arxiv:1105.0651 [astro-ph.CO])

  42. Ellis, G.F.R., Maartens, R.: Class. Quantum Gravity 21, 223 (2004) (gr-qc/0211082)

  43. Ellis, G.F.R., Murugan, J., Tsagas, C.G.: Class. Quantum Gravity 21, 233 (2004) (arxiv:gr-qc/0307112)

  44. Mulryne, D.J., Tavakol, R., Lidsey, J.E., Ellis, G.F.R.: Phys. Rev. D71, 123512 (2005) (arxiv:astro-ph/0502589)

  45. Banerjee, A., Bandyopadhyay, T., Chaakraborty, S.: Gravity Cosmol. 13, 290-292 (2007) (arxiv:0705.3933 [gr-qc])

  46. Lidsey, J.E., Mulryne, D.J.: Phys. Rev. D73, 083508 (2006) (arxiv:hep-th/0601203)

  47. Mukherjee, S., Paul, B.C., Maharaj, S.D., Beesham, A.: arxiv:qr-qc/0505103

  48. Mukherjee, S., Paul, B.C., Dadhich, N.K., Maharaj, S.D., Beesham, A.: Class. Quantum Gravity 23, 6927 (2006) (arxiv:gr-qc/0605134)

  49. Liddle, A.R., Ureña-López, L.A.: Phys. Rev. D68, 043517 (2003)

    ADS  Google Scholar 

  50. Lyth, D.H., Wands, D.: Phys. Lett. B524, 5 (2002)

    Article  ADS  Google Scholar 

  51. Mollerach, S.: Phys. Rev. D 42, 313 (1990)

    Article  ADS  Google Scholar 

  52. Fend, B., Li, M.: Phys. Lett. 564B, 169-174 (2003) (arxiv:hep-ph/0212213)

  53. Campuzano, C., del Campo, S., Herrera, R.: Phys. Rev. D 72, 083515 (2005)

    Article  ADS  Google Scholar 

  54. Campuzano, C., del Campo, S., Herrera, R.: Phys. Rev. D 72, 109902 (2005)

    Article  ADS  Google Scholar 

  55. Campuzano, C., del Campo, S., Herrera, R.: Phys. Lett. B 633, 149 (2006)

    Article  ADS  Google Scholar 

  56. Campuzano, C., del Campo, S., Herrera, R.: JCAP 0606, 017 (2006)

    Article  ADS  Google Scholar 

  57. Zhang, H.S., Zhu, Z.H.: Phys. Lett. B 641, 405 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. del Campo, S., Herrera, R.: Phys. Rev. D 76, 103503 (2007)

    Article  ADS  Google Scholar 

  59. del Campo, S., Herrera, R., Saavedra, J., Campuzano, C., Rojas, E.: Phys. Rev. D 80, 123531 (2009)

    Article  ADS  Google Scholar 

  60. He, C., Grin, D., Hu, W.: arXiv:1505.00639 [astro-ph.CO]

  61. Hardwick, R.J., Byrnes, C.T.: arXiv:1502.06951 [astro-ph.CO]

  62. Feng, K., Qiu, T.: Phys. Rev. D 90(12), 123508 (2014)

    Article  ADS  Google Scholar 

  63. Clesse, S., Garbrecht, B., Zhu, Y.: JCAP 1410(10), 046 (2014)

    Article  ADS  Google Scholar 

  64. Feng, K., Qiu, T., Piao, Y.S.: Phys. Lett. B 729, 99 (2014)

    Article  ADS  Google Scholar 

  65. Starobinsky, A.: Phys. Lett. 91B, 99–102 (1980)

    Article  ADS  Google Scholar 

  66. Zee, A.: Phys. Rev. Lett. 42, 417 (1979)

    Article  ADS  Google Scholar 

  67. Gell Mann, M., Ramond, P., Slansky, R.: In: Supergravity, Friedman, D. (eds.) (North Holland, Amsterdam), p. 315 (1979)

  68. Yanagida, T.: In: Proceedings of the workshop pn ‘Unified Theories and Baryon Number in the Universe’, Sawada, O., Sugamoto, A. (eds.) (KEK, Tsukuba, Japan) (1979)

  69. Mohapatra, R., Senjanovich, G.: Phys. Rev. Lett. 44, 912 (1980)

    Article  ADS  Google Scholar 

  70. Mohapatra, R., Senjanovich, G.: Phys. Rev. 23, 65 (1981)

    Article  Google Scholar 

  71. Davidson, A., Wali, K.: Phys. Rev. Lett. 59, 393 (1987)

    Article  ADS  Google Scholar 

  72. Rajpoot, S.: Phys. Lett. B191, 122 (1987)

    Article  ADS  Google Scholar 

  73. Rajpoot, S.: Phys. Rev. D36, 1479–1483 (1987)

    ADS  MathSciNet  Google Scholar 

  74. Rajpoot, S.: Mod. Phys. Lett. A2(5), 307–315 (1987)

    Article  ADS  Google Scholar 

  75. Rajpoot, S.: Mod. Phys. Lett. A2(75), 541 (1987)

    Google Scholar 

  76. Lyth, D., Ungarelli, C., Wands, D.: Phys. Rev. D 67, 023503 (2003)

    Article  ADS  Google Scholar 

  77. Komatsu, E., Spergel, D.: Phys. Rev. D 63, 063002 (2001)

    Article  ADS  Google Scholar 

  78. Stompor, R., Banday, A., Gorski, K.: Astrophys. J. 463, 8 (1996)

    Article  ADS  Google Scholar 

  79. Ade, P.A.R. et al.: Planck collaboration, arXiv:1502.01592 [astro-ph.CO]

  80. Sasaki, M., Valiviita, J., Wands, D.: Phys. Rev. D74, 103003 (2006)

    ADS  Google Scholar 

  81. Lyth, D.H., Rodriguez, Y.: Phys. Rev. Lett. 95, 121302 (2005)

    Article  ADS  Google Scholar 

  82. Lesgourgues, J., Pastor, S.: Phys. Rep. 429, 307 (2006)

    Article  ADS  Google Scholar 

  83. Di Valentino, E., Lattanzi, M., Mangano, G., Melchiorri, A., Serpico, P.: Phys. Rev. D 85, 043511 (2012)

    Article  ADS  Google Scholar 

  84. Harigaya, K., Hayakawa, T., Kawasaki, M., Yokoyama, S.: JCAP 1410(10), 068 (2014)

    Article  ADS  Google Scholar 

  85. Dimopoulos, K., Lyth, D.: Phys. Rev. D 69, 123509 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

EG wants to thank the Pontificia Universidad Católica de Valparaíso for hospitality. R H was supported by Comisión Nacional de Ciencias y Tecnología of Chile through FONDECYT Grant No. 1130628 and DI-PUCV No. 123.724.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo I. Guendelman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guendelman, E.I., Herrera, R. Curvaton reheating mechanism in a scale invariant two measures theory. Gen Relativ Gravit 48, 3 (2016). https://doi.org/10.1007/s10714-015-1999-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-015-1999-9

Keywords

Navigation