Skip to main content
Log in

Entanglement, tensor networks and black hole horizons

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We elaborate on a previous proposal by Hartman and Maldacena on a tensor network which accounts for the scaling of the entanglement entropy in a system at a finite temperature. In this construction, the ordinary entanglement renormalization flow given by the class of tensor networks known as the Multi Scale Entanglement Renormalization Ansatz (MERA), is supplemented by an additional entanglement structure at the length scale fixed by the temperature. The network comprises two copies of a MERA circuit with a fixed number of layers and a pure matrix product state which joins both copies by entangling the infrared degrees of freedom of both MERA networks. The entanglement distribution within this bridge state defines reduced density operators on both sides which cause analogous effects to the presence of a black hole horizon when computing the entanglement entropy at finite temperature in the AdS/CFT correspondence. The entanglement and correlations during the thermalization process of a system after a quantum quench are also analyzed. To this end, a full tensor network representation of the action of local unitary operations on the bridge state is proposed. This amounts to a tensor network which grows in size by adding succesive layers of bridge states. Finally, we discuss on the holographic interpretation of the tensor network through a notion of distance within the network which emerges from its entanglement distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. An alternative way to find the canonical form of an MPS representation can be found in [33].

  2. In this paper, we will be mainly focused in the \(D=2\) case, for which the Eq. (2.13) reduces to, \(S_{A}=\mathrm{Length}(\gamma _{A})/4G^{(3)}_N\).

  3. In the following we use the notation \(\lbrace i \rbrace = \lbrace i_1,\ldots ,i_N\rbrace \), \(\lbrace j \rbrace = \lbrace j_1,\ldots ,j_N\rbrace \) and \(\lbrace i j\rbrace = \lbrace i \rbrace \cup \lbrace j \rbrace \). In case \(d=2\), the state can be written as \(\vert \Psi \rangle = \left( \frac{1}{\sqrt{2}}\, (\vert 0 0 \rangle + \vert 1 1 \rangle )\right) ^{\otimes N}\), i.e the purified MPS state resembles a system of \(N\) Bell pairs shared between the \(\left\{ i \right\} \) and \(\left\{ j \right\} \) sites.

  4. In the gravitational terminology this is a fiducial observer FIDO for which the local temperature diverges near the horizon.

  5. As has been pointed out in [16, 17], each tensor may represent the wavefunction of a region of AdS radius, so this notion of proximity could be appropriate between regions which size is similar to the AdS radius but not for smaller distances.

References

  1. Aharony, O., Gubser, S.S., Maldacena, J.M., Ooguri, H., Oz, Y.: Large N field theories. String theory and gravity. Phys. Rep. 323, 183 (2000). hep-th/9905111

  2. Maldecena, J.M.: The Large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998). hep-th/9711200

  3. Gubser, S.S., Klebanov, I.R., Polyakov, A.M.: Gauge theory correlators from non-critical string theory. Phys. Lett. B 428, 105 (1998). hep-th/9802109

  4. Witten, E.: Anti-de Sitter space, thermal phase transition, and confinement in gauge theories. Adv. Theor. Math. Phys. 2, 505 (1998). hep-th/9803131

  5. Douglas, M.R., Mazzucato, L., Razamat, S.S.: Holographic dual of free field theory. Phys. Rev. D 83, 071701 (2011). arXiv:1011.4926 [hep-th]

  6. de Boer, J., Verlinde, E., Verlinde, H.: On the Holographic renormalization group. JHEP 0008, 003 (2000). hep-th/9912012

  7. Fukuma, M., Matsuura, S., Sakai, T.: Holographic renormalization group. Prog. Theor. Phys. 109, 489–562 (2003). hep-th/0212314

  8. White, S.R.: Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863 (1992)

    Article  ADS  Google Scholar 

  9. Perez-Garcia, D., Verstraete, F., Wolf, M.M., Cirac, J.I.: Matrix Product State Representations. Quantum Inf. Comput. 7, 401 (2007). quant-ph/0608197

  10. Verstraete, F., Cirac, J.I., Murg, V.: Matrix Product States, Projected Entangled Pair States, and variational renormalization group methods for quantum spin systems. Adv. Phys. 57, 143 (2008). arXiv:0907.2796 [quant-ph]

  11. Vidal, G.: Entanglement renormalization. Phys. Rev. Lett. 99, 220405 (2007). cond-mat/0512165 [cond-mat.str-el]

  12. Levin, M., Nave, C.P.: Tensor renormalization group approach to 2D classical lattice models, Phys. Rev. Lett. 99, 120601 (2007). cond-mat/0611687 [cond-mat.stat-mech]

  13. Gu, Z., Wen, X.-G.: Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order. Phys. Rev. B. 80, 155131 (2009). arXiv:0903.1069 [cond-mat.str-el]

  14. Denny, S.J., Biamonte, J.D., Jaksch, D., Clark, S.R.: Algebraically contractible topological tensor network states. J. Phys. A Math. Theor. 45, 015309 (2012). arXiv:1108.0888 [quant-ph]

  15. Evenbly, G., Vidal, G.: Tensor network states and geometry. J. Stat. Phys. 145, 891–918 (2011). arXiv:1106.1082 [quant-ph]

  16. Swingle, B.: Entanglement Renormalization and Holography. Phys. Rev. D 86, 065007 (2012). arXiv:0905.1317 [cond-mat.str-el]

  17. Hartman, T., Maldacena, J.: Time evolution of entanglement entropy from black hole interiors. JHEP 05, 014 (2013). arXiv:1303.1080 [hep-th]

  18. Molina-Vilaplana, J.: Holographic Geometries of one-dimensional gapped quantum systems from Tensor Network States. JHEP 1305, 024 (2013) arXiv:1210.6759 [hep-th]

  19. Matsueda, H., Ishihara, M., Hashizume, Y.: Tensor network and black hole. Phys. Rev. D 87, 066002 (2013). arXiv:1208.0206 [hep-th]

  20. Mollabashi, A., Nozaki, M., Ryu, S., Takayanagi, T.: Holographic geometry of cMERA for quantum quenches and finite temperature. arXiv:1311.6095 [hep-th]

  21. Molina-Vilaplana, J., Sodano, P.: Holographic view on quantum correlations and mutual information between disjoint blocks of a quantum critical system. JHEP. 10, 011 (2011). arXiv:1108.1277 [quant-ph]

  22. Balasubramanian, V., McDermott, M.B., Van Raamsdonk, M.: Momentum-space entanglement and renormalization in quantum field theory. Phys. Rev. D 86, 045014 (2012). arXiv:1108.3568 [hep-th]

  23. Ishihara, M., Lin, F.-L., Ning, B.: Refined holographic entanglement entropy for the AdS solitons and AdS black holes. Nucl. Phys. B 872, 392426 (2013) arXiv:1203.6153 [hep-th]

  24. Nozaki, M., Ryu, S., Takayanagi, T.: Holographic geometry of entanglement renormalization in quantum field theories. JHEP 10, 193 (2012). arXiv:1208.3469 [hep-th]

  25. Haegeman, J., Osborne, T.J., Verschelde, H., Verstraete, F.: Entanglement renormalization for quantum fields in real space. Phys. Rev. Lett. 110, 100402 (2013) arXiv:1102.5524 [hep-th]

  26. Swingle, B.: Constructing holographic spacetimes using entanglement renormalization (2012). arXiv:1209.3304 [hep-th]

  27. Singh, S., Vidal, G.: Symmetry protected entanglement renormalization, arXiv:1303.6716 [cond-mat.str-el]

  28. Israel, W.: Thermofield dynamics of black holes. Phys. Lett. A 57, 107 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  29. Maldacena, J.M.: Eternal black holes in anti-de Sitter. JHEP 0304, 021 (2003). hep-th/0106112

  30. Van Raamsdonk, M.: Comments on quantum gravity and entanglement. arXiv:0907.2939 [hep-th]

  31. Van Raamsdonk, M.: Building up spacetime with quantum entanglement. Gen. Relativ. Gravit. 42, 2323 (2010)

    Article  ADS  MATH  Google Scholar 

  32. Van Raamsdonk, M.: Building up spacetime with quantum entanglement. Int. J. Mod. Phys. D 19, 2429 (2010) arXiv:1005.3035 [hep-th]

  33. Vidal, G.: Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003) arXiv:quant-ph/0301063

  34. Ryu, S., Takayanagi, T.: Holographic derivation of entanglement entropy from the antide Sitter space/conformal field theory correspondence. Phys. Rev. Lett. 96, 181602 (2006). hep-th/0603001

  35. Ryu, S., Takayanagi, T.: Aspects of holographic entanglement entropy. JHEP 0608, 045 (2006). hep-th/0605073

  36. Nishioka, T., Ryu, S., Takayanagi, T.: J. Phys. A 42, 504008 (2009). arXiv:0905.0932 [hep-th]

  37. Takayanagi, T.: Entanglement entropy from a holographic viewpoint. Class. Quantum Grav. 29, 153001 (2012). arXiv:1204.2450 [gr-qc]

  38. Verstraete, F., Garcia-Ripoll, J.J., Cirac, J.I.: Matrix product density operators: simulation of finite-T and dissipative systems. Phys. Rev. Lett. 93, 207204 (2004). arXiv:cond-mat/0406426 [cond-mat.other]

  39. Brown, J.D., Henneaux, M.: Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity. Commun. Math. Phys. 104(2), 177–352 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  40. Headrick, M.: Entanglement Renyi entropies in holographic theories. Phys. Rev D82, 126010 (2010) arXiv:1006.0047 [hep-th]

  41. Calabrese, P., Cardy, J.L.: Evolution of entanglement entropy in one-dimensional systems. J. Stat. Mech. P04010 (2005) cond-mat/0503393

  42. Wolf, M.M., Verstraete, F., Hastings, M.B., Cirac, J.I.: Area laws in quantum systems: mutual information and correlations. Phys. Rev. Lett. 100, 070502 (2008) arXiv:0704.3906 [quant-ph]

  43. Fannes, M., Nachtergaele, B., Werner, R.F.: Finitely correlated states on quantum spin chains. Commun. Math. Phys. 144, 443 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  44. Ostlund, S., Rommer, S.: Thermodynamic limit of density matrix renormalization. Phys. Rev. Lett. 75, 3537 (1995)

    Article  ADS  Google Scholar 

  45. Rommer, S., Ostlund, S.: Class of ansatz wave functions for one-dimensional spin systems and their relation to the density matrix renormalization group. Phys. Rev. B 55, 2164 (1997)

    Article  ADS  Google Scholar 

  46. Vidal, G.: A class of quantum many-body states that can be efficiently simulated. Phys. Rev. Lett. 101, 110501 (2008) arXiv:quant-ph/0610099

  47. Rizzi, M., Montangero, S., Vidal, G.: Simulation of time evolution with the MERA. Phys. Rev. A 77, 052328 (2008). arXiv:0706.0868 [quant-ph]

  48. Maldacena, J., Susskind, L.: Cool horizons for entangled black holes. Fortsch. Phys. 61, 781–811 (2013). arXiv:1306.0533 [hep-th]

Download references

Acknowledgments

The authors thank S. R. Clark, J. Rodríguez-Laguna and E. da Silva for giving very fruitful suggestions on the manuscript. JMV thanks the hospitality of Germán Sierra and Esperanza López at the Institute of Theoretical Physics CSIC-UAM in Madrid. This work has been funded by Ministerio de Economía y Competitividad Project No. FIS2012-30625.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Molina-Vilaplana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molina-Vilaplana, J., Prior, J. Entanglement, tensor networks and black hole horizons. Gen Relativ Gravit 46, 1823 (2014). https://doi.org/10.1007/s10714-014-1823-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-014-1823-y

Keywords

Navigation