Skip to main content
Log in

Parameterization of temperature and spectral distortions in future CMB experiments

  • Editor's Choice (LETTER)
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

CMB spectral distortions are induced by Compton collisions with electrons. We review the various schemes to characterize the anisotropic CMB with a non-Planckian spectrum. We advocate using logarithmically averaged temperature moments as the preferred language to describe these spectral distortions, both for theoretical modeling and observations. Numerical modeling is simpler, the moments are frame-independent, and in terms of scattering the mode truncation is exact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ade, P., et al.: Planck Collaboration. arXiv:1303.5080 (2013)

  2. Ade, P., et al.: Planck Collaboration. arXiv:1303.5081 (2013)

  3. Chluba, J., Jeong, D.: Mon. Not. R. Astron. Soc. 438(3), 2544–2563 (2014)

  4. Goodman, J.: Phys. Rev. D. 52, 1821 (1995)

    Article  ADS  Google Scholar 

  5. Stebbins, A.: astro-ph/0703541(2007)

  6. Huang, Z., Vernizzi, F.: Phys. Rev. Lett. 110, 101303 (2013)

    Article  ADS  Google Scholar 

  7. Pettinari, G.W., Fidler, C., Crittenden, R., Koyama, K., Wands, D.: JCAP 1304, 003 (2013)

    Article  ADS  Google Scholar 

  8. Zel’dovich, Y.B., Illarionov, A.F., Syunyaev, R.A.: Sov. JETP 35, 643 (1972)

    ADS  Google Scholar 

  9. Chan, K.L., Jones, B.J.T.: Astrophys. J. 198, 245 (1975)

    Article  ADS  Google Scholar 

  10. Salas, L.: Astrophys. J. 385, 288 (1992)

    Article  ADS  Google Scholar 

  11. Chluba, J., Sunyaev, R.: Astron. Astrophys. 424, 389 (2003)

    Article  ADS  Google Scholar 

  12. Ellis, G., Poltis, R., Uzan, J.-P., Weltman, A.: Phys. Rev. D 87, 103530 (2013)

    Article  ADS  Google Scholar 

  13. Pitrou, C., Bernardeau, F., Uzan, J.-P.: JCAP 1007, 019 (2010)

    Article  ADS  Google Scholar 

  14. Naruko, A., Pitrou, C., Koyama, K., Sasaki, M.: Class. Quantum Grav. 30, 165008 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  15. Renaux-Petel, S., Fidler, C., Pitrou, C., Pettinari, G.W.: JCAP 1403, 033 (2014)

  16. Pitrou, C., Uzan, J.-P., Bernardeau, F.: JCAP 1007, 003 (2010b)

    Article  ADS  Google Scholar 

  17. Creminelli, P., Pitrou, C., Vernizzi, F.: JCAP 1111, 025 (2011)

    Article  ADS  Google Scholar 

  18. Tsagas, C.G., Challinor, A., Maartens, R.: Phys. Rep. 465, 61 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  19. Andre, P., et al.: PRISM Collaboration (2013)

  20. Beneke, M., Fidler, C.: Phys. Rev. D 82, 063509 (2010)

    Article  ADS  Google Scholar 

  21. Kompaneets, A.: JETP 4, 730 (1957)

    MathSciNet  Google Scholar 

  22. Pitrou, C.: Class. Quantum Grav. 26, 065006 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  23. Zeldovich, Y.B., Sunyaev, A.: Astrophy. Space Sci. 4, 301 (1969)

    Article  ADS  Google Scholar 

  24. Sunyaev, R.A., Zeldovich, I.B.: MNRAS 190, 413 (1980)

    Article  ADS  Google Scholar 

  25. Hu, W., Cooray, A.: Phys. Rev. D 63, 023504 (2001)

    Article  ADS  Google Scholar 

  26. Huang, Z., Vernizzi, F.: Phys. Rev. D 89, 021302 (2014)

  27. Fidler, C., Pettinari, G.W., Beneke, M., Crittenden, R., Koyama, K. et al.: JCAP 07, 011 (2014)

  28. Chluba, J., Sunyaev, R.: Mon. Not. R. Astron. Soc. 419(2), 1294–1314 (2012)

  29. Chluba, J.: Mon. Not. R. Astron. Soc. 440(3), 2544–2563 (2014)

Download references

Acknowledgments

C.P. thanks J. Chluba, C. Fidler, Z. Huang, S. Renaux-Petel, G. Pettinari, J.-P. Uzan, and F. Vernizzi for fruitful discussions. This work was supported by French state funds managed by the ANR within the Investissements d’Avenir programme under reference ANR-11-IDEX-0004-02. AS was supported by the DOE at Fermilab under Contract No. DE-AC02-07CH11359.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril Pitrou.

Appendix

Appendix

Distribution functions with a chemical potential. At redshifts higher than \(z \simeq 10^4\) and smaller than \(z \simeq 3\,\times \, 10^{5}\), the thermalization of photons with an excess of energy with respect to a Planck spectrum results in a Bose–Einstein distribution with a chemical potential [29]. However, at low energies, processes such as double Compton emission and Bremsstrahlung are enough to modify the spectrum and remove the effect of the chemical potential so that the low energy limit of the distribution is still \(\propto 1/E\). It is indeed approximately described by a Bose–Einstein distribution with an energy dependent chemical potential. At high energies, this chemical potential converges to a constant, but at low energies it is suppressed, and the transition from one regime to the other is governed by a cut-off \(x_c=E_c/T\) [29]. The distribution function of this ansatz is approximately of the form

$$\begin{aligned} n(x) = \frac{1}{e^{x+\mu (x)} -1},\quad \mu (x) = \mu _{\infty } e^{-x_c/x}. \end{aligned}$$
(17)

with \(x\equiv E/T\). A typical cut-off is \(x_c=0.01\) and one can check that when \(\mu _\infty \rightarrow 0\), this distribution approaches a BBR as the various moments decrease, as expected. In Fig. 1 we plot the first moments as a function the chemical potential \(\mu _\infty \) to illustrate this convergence.

Fig. 1
figure 1

The main moments for a pseudo Bose–Einstein distribution (17) with cut-off \(x_c=0.01\). In black \(\log _{10} \bar{T}\). In colors \(-u_k/k!\) for \(k=2,3,4,5\) (from bottom to top) (color figure online)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitrou, C., Stebbins, A. Parameterization of temperature and spectral distortions in future CMB experiments. Gen Relativ Gravit 46, 1806 (2014). https://doi.org/10.1007/s10714-014-1806-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-014-1806-z

Keywords

Navigation