Skip to main content
Log in

General relativistic null-cone evolutions with a high-order scheme

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We present a high-order scheme for solving the full non-linear Einstein equations on characteristic null hypersurfaces using the framework established by Bondi and Sachs. This formalism allows asymptotically flat spaces to be represented on a finite, compactified grid, and is thus ideal for far-field studies of gravitational radiation. We have designed an algorithm based on 4th-order radial integration and finite differencing, and a spectral representation of angular components. Consequently the scheme offers more accuracy at a given computational cost compared to previous methods which are second-order accurate. Based on a newly implemented code, we show that the new numerical scheme remains stable and is convergent at the expected order of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. An explicit form for \(q^A\) will not be needed here, since we will represent angular dependence in terms of spin-weighted spherical harmonic basis functions.

  2. We have found that lower values of \(\epsilon \) may trigger an instability at \({\mathcal{J }^{+}}\). This can be cured by either using larger \(\epsilon \) everywhere, or by just increasing \(\epsilon \) at \({\mathcal{J }^{+}}\).

References

  1. Reisswig, C., Bishop, N.T., Pollney, D., Szilagyi, B.: Unambiguous determination of gravitational waveforms from binary black hole mergers. Phys. Rev. Lett. 103, 221101 (2009)

    Article  ADS  Google Scholar 

  2. Reisswig, C., Bishop, N.T., Pollney, D., Szilagyi, B.: Characteristic extraction in numerical relativity: binary black hole merger waveforms at null infinity. Class. Quantum Gravity 27, 075014 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  3. Babiuc, M.C., Szilagyi, B., Winicour, J., Zlochower, Y.: A characteristic extraction tool for gravitational waveforms. Phys. Rev. D 84, 044057 (2011)

    Article  ADS  Google Scholar 

  4. Babiuc, M.C., Winicour, J., Zlochower, Y.: Binary black hole waveform extraction at null infinity. Class. Quantum Gravity 28, 134006 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  5. Reisswig, C., Ott, C.D., Sperhake, U., Schnetter, E.: Gravitational wave extraction in simulations of rotating stellar core collapse. Phys. Rev. D 83, 064008 (2011)

    Article  ADS  Google Scholar 

  6. Ott, C.D., Reisswig, C., Schnetter, E., O’Connor, E., Sperhake, U., Löffler, F., Diener, P., Abdikamalov, E., Hawke, I., Burrows, A.: Dynamics and gravitational wave signature of collapsar formation. Phys. Rev. Lett. 106, 161103 (2011)

    Article  ADS  Google Scholar 

  7. Winicour, J.: Characteristic evolution and matching. Living Rev. Relativ. 8, 10 (2005) [Online article].

  8. Bondi, H., van der Burg, M.G.J., Metzner, A.W.K.: Gravitational waves in general relativity VII. Waves from axi-symmetric isolated systems. Proc. R. Soc. A. 269, 21–52 (1962)

    Article  ADS  MATH  Google Scholar 

  9. Sachs, R.K.: Gravitational waves in general relativity. Proc. R. Soc. A. 270, 103–126 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Penrose, R.: Asymptotic properties of fields and spacetimes. Phys. Rev. Lett. 10, 66–68 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  11. Bishop, N.T., Gómez, R., Lehner, L., Winicour, J.: Cauchy-characteristic extraction in numerical relativity. Phys. Rev. D. 54, 6153–6165 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  12. Bishop, N.T., Gómez, R., Lehner, L., Maharaj, M., Winicour, J.: High-powered gravitational news. Phys. Rev. D. 56(10), 6298–6309 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  13. Löffler, F., Faber, J., Bentivegna, E., Bode, T., Diener, P., Haas, R., Hinder, I., Mundim, B.C., Ott, C.D., Schnetter, E., Allen, G., Campanelli, M., Laguna, P.: The Einstein Toolkit: a community computational infrastructure for relativistic astrophysics. Class. Quantum Gravity 29(11), 115001 (2012)

    Article  ADS  Google Scholar 

  14. Gómez, R., Winicour, J., Isaacson, R.: Evolution of scalar fields from characteristic data. J. Comput. Phys. 98, 11–25 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Reisswig, C., Bishop, N.T., Lai, C.W., Thornburg, J., Szilágyi, B.: Characteristic evolutions in numerical relativity using six angular patches. Class. Quantum Gravity 24, S327–S339 (2007)

    Article  ADS  MATH  Google Scholar 

  16. Gomez, R., Barreto, W., Frittelli, S.: A framework for large-scale relativistic simulations in the characteristic approach. Phys. Rev. D 76, 124029 (2007)

    Google Scholar 

  17. Bartnik, R.: Einstein equations in the null quasispherical gauge. Class. Quantum Gravity 14, 2185–2194 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Bartnik, R.A., Norton, A.H.: Einstein equations in the null quasi-spherical gauge III: numerical algorithms. gr-qc/9904045 (1999)

  19. Bishop, N.T., Clarke, C., d’Inverno, R.: Numerical relativity on a transputer array. Class. Quantum Gravity 7(2), L23–L27 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  20. Stewart, J.M.: Advanced General Relativity. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  21. Gustafsson, B., Gustafsson, H.O., Oliger, J.: Time Dependent Problems and Difference Methods. Wiley, New York (1995)

    MATH  Google Scholar 

  22. Gómez, R., Lehner, L., Papadopoulos, P., Winicour, J.: The eth formalism in numerical relativity. Class. Quantum Gravity 14(4), 977–990 (1997)

    Article  ADS  MATH  Google Scholar 

  23. Goldberg, J.N., MacFarlane, A.J., Newman, E.T., Rohrlich, F., Sudarshan, E.C.G.: Spin-\(s\) spherical harmonics and \(\eth \). J. Math. Phys. 8(11), 2155–2161 (1967)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C++ : The Art of Scientific Computing. New York, 3rd edition (2002)

  25. Driscoll, J.R., Healy Jr, D.M.: Computing fourier transforms and convolutions on the 2-sphere. Adv. Appl. Math. 15(2), 202–250 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Goodale, T., Allen, G., Lanfermann, G., Massó, J., Radke, T., Seidel, E., Shalf, J.: The Cactus framework and toolkit: design and applications. In: Vector and Parallel Processing—VECPAR’2002, 5th International Conference, Lecture Notes in Computer Science, Berlin, Springer (2003)

  27. http://www.cactuscode.org

  28. Schnetter, E., Hawley, S.H., Hawke, I.: Evolutions in 3D numerical relativity using fixed mesh refinement. Class. Quantum Gravity 21(6), 1465–1488 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. http://www.carpetcode.org

  30. Reisswig, C.: Binary Black Hole Mergers and Novel Approaches to Gravitational Wave Extraction in Numerical Relativity. PhD thesis, Leibniz Universität Hannover, (2010)

  31. Pollney, D., Reisswig, C., Schnetter, E., Dorband, N., Diener, P.: High accuracy binary black hole simulations with an extended wave zone. arXiv:0910.3803, (2009)

  32. Pollney, D., Reisswig, C., Dorband, N., Schnetter, E., Diener, P.: The asymptotic falloff of local waveform measurements in numerical relativity. Phys. Rev. D 80, 121502 (2009)

    Article  ADS  Google Scholar 

  33. Bishop, N.T., Gómez, R., Holvorcem, P.R., Matzner, R.A., Papadopoulos, P., Winicour, J.: Cauchy-characteristic matching: a new approach to radiation boundary conditions. Phys. Rev. Lett. 76(23), 4303–4306 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Bishop, N.T.: Linearized solutions of the Einstein equations within a Bondi-Sachs framework, and implications for boundary conditions in numerical simulations. Class. Quantum Gravity 22(12), 2393–2406 (2005)

    Article  ADS  MATH  Google Scholar 

  35. Szilágyi, B., Gomez, R., Bishop, N.T., Winicour, J.: Cauchy boundaries in linearized gravitational theory. Phys. Rev. D. 62, 104006 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  36. Alcubierre, M., Allen, G., Baumgarte, T.W., Bona, C., Fiske, D., Goodale, T., Guzmán, F.S., Hawke, I., Hawley, S., Husa, S., Koppitz, M., Lechner, C., Lindblom, L., Pollney, D., Rideout, D., Salgado, M., Schnetter, E., Seidel, E., Shinkai, H., Shoemaker, D., Szilágyi, B., Takahashi, R., Winicour, J.: Towards standard testbeds for numerical relativity. Class. Quantum Grav. 21(2), 589–613 (2004)

    Article  ADS  MATH  Google Scholar 

  37. Diener, P., Dorband, E.N., Schnetter, E., Tiglio, M.: Optimized high-order derivative and dissipation operators satisfying summation by parts, and applications in three-dimensional multi-block evolutions. J. Sci. Comput. 32, 109–145 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Peter Diener for providing dissipation operator stencil coefficients, and Harald Pfeiffer for comments on the manuscript. We thank the Erwin Schroedinger Institute, Austria, Universitas de les Illes Balears, Spain, and Rhodes University, South Africa, for hospitality. This work is supported by the National Science Foundation under grant numbers AST-0855535 and OCI-0905046. CR acknowledges support by NASA through Einstein Postdoctoral Fellowship grant number PF2-130099 awarded by the Chandra X-ray center, which is operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8-03060. NTB has been supported by the National Research Foundation, South Africa. Computations were performed on the LONI network (www.loni.org) under allocation loni_numrel06 and loni_numrel07, and the Caltech compute cluster “Zwicky” (NSF MRI award No. PHY-0960291).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Reisswig.

Additional information

Christian Reisswig: Einstein Fellow.

Appendices

Appendix A: The nonlinear terms in the Einstein equations

The nonlinear terms \(N_\beta , N_Q, N_U, N_W\) and \(N_J\) in (16a) through (17) were first presented in [12]. We repeat them here, but with a mis-print in Eq. (A3) of [12] corrected.

$$\begin{aligned} N_\beta&= \frac{r}{8}\left( J_{,r}\bar{J}_{,r}-K^2_{,r} \right) .\end{aligned}$$
(61)
$$\begin{aligned} N_U&= \frac{e^{2\beta }}{r^2} \left( KQ-Q-J\bar{Q} \right) ,\end{aligned}$$
(62)
$$\begin{aligned} N_Q&= r^2 \Bigg ( (1-K) ( \eth K_{,r} + {\bar{\eth }} J_{,r} ) + \eth (\bar{J} J_{,r} ) + {\bar{\eth }} ( J K_{,r} ) - J_{,r} {\bar{\eth }} K \nonumber \\&+ \frac{1}{2K^2}(\eth \bar{J} (J_{,r} - J^2 \bar{J}_{,r} ) + \eth J (\bar{J}_{,r} -\bar{J}^2 J_{,r} ) ) \Bigg ).\end{aligned}$$
(63)
$$\begin{aligned} N_W&= e^{2 \beta } \Bigg ( (1-K) ( \eth {\bar{\eth }} \beta + \eth \beta {\bar{\eth }} \beta ) + \frac{1}{2} \bigg ( J ({\bar{\eth }} \beta )^2 + \bar{J} (\eth \beta )^2 \bigg ) \nonumber \\&- \frac{1}{2} \bigg ( \eth \beta ( {\bar{\eth }} K - \eth \bar{J}) + {\bar{\eth }} \beta ( \eth K - {\bar{\eth }} J ) \bigg ) + \frac{1}{2} \bigg ( J {\bar{\eth }}^2 \beta + \bar{J} \eth ^2 \beta \bigg ) \Bigg ) \nonumber \\&- e^{-2 \beta } \frac{r^4}{8} ( 2 K U_{,r} \bar{U}_{,r} + J \bar{U}^2_{,r} + \bar{J} U^2_{,r}).\end{aligned}$$
(64)
$$\begin{aligned} N_J&= N_{J1}\!+\!N_{J2}\!+\!N_{J3}\!+\!N_{J4}\!+\!N_{J5}\!+\!N_{J6}\!+\!N_{J7}\!+\!\frac{J}{r}(P_1\!+\!P_2 \!+\!P_3\!+\!P_4) \nonumber \\ \end{aligned}$$
(65)

where

$$\begin{aligned} N_{J1}&= - \frac{e^{2 \beta }}{r} \bigg ( K ( \eth J {\bar{\eth }} \beta + 2 \eth K \eth \beta - {\bar{\eth }}bar \eth J \eth \beta ) \!+\! J ( {\bar{\eth }}bar \eth J {\bar{\eth }}bar \eth \beta \nonumber \\&\quad - 2 \eth K {\bar{\eth }}bar \eth \beta ) - \bar{J} \eth J \eth \beta \bigg ) , \nonumber \\ N_{J2}&= -\frac{1}{2} \bigg ( \eth J ( r \bar{U}_{,r} \!+\! 2 \bar{U}) \!+\! {\bar{\eth }}bar \eth J ( r U_{,r} + 2 U) \bigg ) , \nonumber \\ N_{J3}&= (1-K) ( r \eth U_{,r} \!+\! 2 \eth U) - J ( r \eth \bar{U}_{,r} \!+\! 2 \eth \bar{U}) , \nonumber \\ N_{J4}&= \frac{r^3}{2} e^{-2 \beta } \bigg ( K^2 U^2_{,r} \!+\! 2 J K U_{,r} \bar{U}_{,r} \!+\! J^2 \bar{U}^2_{,r} \bigg ) , \nonumber \\ N_{J5}&= - \frac{r}{2} J_{,r} ( \eth \bar{U} \!+\! {\bar{\eth }} U) , \nonumber \\ N_{J6}&= r \Bigg ( \frac{1}{2} ( \bar{U} \eth J + U {\bar{\eth }} J ) (J \bar{J}_{,r} - \bar{J} J_{,r} ) \nonumber \\&+ ( J K_{,r} - K J_{,r} ) \bar{U} {\bar{\eth }} J - \bar{U} ( \eth J_{,r} - 2 K \eth K J_{,r} + 2 J \eth K K_{,r} ) \nonumber \\&- U ( {\bar{\eth }}J_{,r} - K \eth \bar{J} J_{,r} \!+\! J \eth \bar{J} K_{,r} ) \Bigg ) , \nonumber \\ N_{J7}&= r ( J_{,r} K - J K_{,r} ) \bigg ( \bar{U} ( {\bar{\eth }} J - \eth K ) + U ( {\bar{\eth }} K - \eth \bar{J} ) \nonumber \\&+ K ( {\bar{\eth }} U - \eth \bar{U} ) \!+\! ( J {\bar{\eth }} \bar{U} - \bar{J} \eth U ) \bigg ) , \nonumber \\ P_1&= r^2 \bigg ( \frac{J_{,u}}{K} (\bar{J}_{,r} K - \bar{J} K_{,r} ) \!+\! \frac{\bar{J}_{,u}}{K} ( J_{,r} K - J K_{,r} ) \bigg ) - 8 \left( r+r^2\hat{W}\right) \beta _{,r} , \nonumber \\ P_2&= e^{2 \beta } \Bigg ( - 2 K ( \eth {\bar{\eth }} \beta + {\bar{\eth }} \beta \eth \beta ) - ( {\bar{\eth }} \beta \eth K + \eth \beta {\bar{\eth }} K) \nonumber \\&+ \bigg ( J ( {\bar{\eth }}^2 \beta + ({\bar{\eth }} \beta )^2 ) + \bar{J} ( \eth ^2 \beta + (\eth \beta )^2 ) \bigg ) + ( {\bar{\eth }} J {\bar{\eth }} \beta + \eth \bar{J} \eth \beta ) \Bigg ), \nonumber \\ P_3&= \frac{r}{2} \bigg ( ( r {\bar{\eth }} U_{,r} + 2 {\bar{\eth }} U) + ( r \eth \bar{U}_{,r} + 2 \eth \bar{U}) \bigg ) , \nonumber \\ P_4&= - \frac{r^4}{4} e^{-2 \beta } ( 2 K U_{,r} \bar{U}_{,r} + J \bar{U}^2_{,r} + \bar{J} U^2_{,r} ). \end{aligned}$$
(66)

Appendix B: Regularized equations at \({\mathcal{J }^{+}}\)

At \({\mathcal{J }^{+}}\), the equations simplify when inserting Eqs.  (21) and (22) and taking the limit \(r\rightarrow \infty \). In particular, terms containing powers of \(1/r,...,1/r^n\) vanish. Below, we give the equations evaluated at \({\mathcal{J }^{+}}\).

$$\begin{aligned} \beta _{,x}&= 0, \end{aligned}$$
(67)
$$\begin{aligned} Q&= -2\eth \beta , \end{aligned}$$
(68)
$$\begin{aligned} U_{,x}&= r_\Gamma ^{-1}e^{2\beta }(KQ-J\bar{Q}), \end{aligned}$$
(69)
$$\begin{aligned} \hat{W}&= \frac{\eth \bar{U}+{\bar{\eth }} U}{2}, \end{aligned}$$
(70)
$$\begin{aligned} \Phi&= -\eth U + N_{J,{\mathcal{J }^{+}}}, \end{aligned}$$
(71)

where

$$\begin{aligned} N_{J,{\mathcal{J }^{+}}} = - \frac{\bar{U} \eth J + U \bar{\eth }J}{2} + (1-K)\eth U - \frac{J(\eth \bar{U}-\bar{\eth }U)}{2}. \end{aligned}$$
(72)

Appendix C: Radial derivative operators

We use fourth-order sidewinded derivatives

$$\begin{aligned} {\partial }f_i&= \frac{1}{\Delta x}\left( -\frac{25}{12}f_i + 4 f_{i+1} - 3 f_{i+2} + \frac{4}{3}f_{i+3} - \frac{1}{4}f_{i+4}\right) , \end{aligned}$$
(73)
$$\begin{aligned} {\partial }^2 f_i&= \frac{1}{\Delta x^2}\left( \frac{15}{4}f_i - \frac{77}{6}f_{i+1} + \frac{107}{6}f_{i+2} - 13 f_{i+3} + \frac{61}{12}f_{i+4} - \frac{5}{6}f_{i+5}\right) ,\nonumber \\ \end{aligned}$$
(74)

where \(\Delta x\) is the grid spacing in the compactified radial coordinate direction.

Close to \({\mathcal{J }^{+}}\) when \(i > N_x-5\), we switch to 4th-order centred stencils

$$\begin{aligned} {\partial }f_i&= \frac{1}{\Delta x}\left( +\frac{1}{12}f_{i-2} - \frac{2}{3} f_{i-2} +\frac{2}{3}f_{i+1} - \frac{1}{12}f_{i+2}\right) , \end{aligned}$$
(75)
$$\begin{aligned} {\partial }^2 f_i&= \frac{1}{\Delta x^2}\left( -\frac{1}{12}f_{i-2} + \frac{4}{3}f_{i-1} -\frac{5}{2}f_{i} + \frac{4}{3} f_{i+1} - \frac{1}{12}f_{i+2}\right) , \end{aligned}$$
(76)

and when \(i > N_x-3\), we switch to side-winded stencils pointing towards the inner boundary

$$\begin{aligned} {\partial }f_i \!&= \! \frac{1}{\Delta x}\left( \frac{25}{12}f_i\! -\! 4 f_{i-1} \!+\! 3 f_{i-2} \!-\! \frac{4}{3}f_{i-3} \!+\! \frac{1}{4}f_{i-4}\right) , \end{aligned}$$
(77)
$$\begin{aligned} {\partial }^2 f_i \!&= \! \frac{1}{\Delta x^2}\left( \frac{15}{4}f_i \!-\! \frac{77}{6}f_{i-1} \!+\! \frac{107}{6}f_{i-2} \!-\! 13 f_{i-3} \!+\! \frac{61}{12}f_{i-4} \!-\! \frac{5}{6}f_{i-5}\right) . \end{aligned}$$
(78)

Appendix D: Dissipation operator stencil

We use a 5th-order Kreiss–Oliger dissipation operator of the form

$$\begin{aligned} D f_i \!=\! \frac{\epsilon _\mathrm{diss}}{64 \Delta x} \left( f_{i-3} \!- \!6 f_{i-2} \!+\! 15 f_{i-1} \!-\! 20 f_{i} \!+\! 15 f_{i+1} \!-\! 6 f_{i+2} \!+\! f_{i+3}\right) \!,\quad \end{aligned}$$
(79)

where \(\epsilon _\mathrm{diss}\) controls the strength of the applied dissipation operator \(D\).

Close to the outer boundary where we do not have enough points to apply the standard centred-stencil Kreiss–Oliger dissipation operator Eq. (79), we use side-winded dissipation operator stencils derived for SBP operator (though we do not make explicit use of the SBP property) \(D_{4-2}\) of [37]. This particular dissipation operator is defined via coefficients \(a_{ij}\) and \(q_{i}\). In the interior of the domain the operator reads

$$\begin{aligned} A_{ij} u_j&= \frac{\epsilon _\mathrm{diss}}{2^{2p}} \left[ q_0 u_i + \sum _{j=1}^7 q_{j} \left( u_{i-j} + u_{i+j} \right) \right] \end{aligned}$$
(80)

where the \(q_i\) are the coefficients given in Eq. (79). Near the outer boundary (on points \(i=N_x-5,...,N_x-1\)), the operator can be written as

$$\begin{aligned} A_{ij} u_j&= \frac{\epsilon _\mathrm{diss}}{2^{2p}} \sum _{j=1}^{7} a_{j,N_x-i} u_{N_x-j}, \end{aligned}$$
(81)

where the coefficients \(a_{ij}\) are taken from [37] reported below. We note that \(\epsilon _\mathrm{diss}\ge 0\) selects the amount of dissipation and is usually of order unity.

$$\begin{aligned} (a_{ij}) = \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} -\frac{48}{17} &{} \frac{144}{17} &{} -\frac{144}{17} &{} \frac{48}{17} &{} 0 &{} 0 &{} 0 \\ \frac{144}{59} &{} -\frac{480}{59} &{} \frac{576}{59} &{} -\frac{288}{59} &{} \frac{48}{59} &{} 0 &{} 0 \\ \frac{144}{43} &{} \frac{576}{43} &{} -\frac{912}{43} &{} \frac{720}{43} &{} -\frac{288}{43} &{} \frac{48}{43} &{} 0 \\ \frac{48}{49} &{} -\frac{288}{49} &{} \frac{720}{49} &{} -\frac{960}{49} &{} \frac{720}{49} &{} -\frac{288}{49} &{} \frac{48}{49} \end{array}\right) \end{aligned}$$
(82)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reisswig, C., Bishop, N. & Pollney, D. General relativistic null-cone evolutions with a high-order scheme. Gen Relativ Gravit 45, 1069–1094 (2013). https://doi.org/10.1007/s10714-013-1513-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-013-1513-1

Keywords

Navigation