Skip to main content
Log in

Dynamical behaviors of FRW universe containing a positive/negative potential scalar field in loop quantum cosmology

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The dynamical behaviors of FRW Universe containing a posivive/negative potential scalar field in loop quantum cosmology scenario are discussed. The method of the phase-plane analysis is used to investigate the stability of the Universe. It is found that the stability properties in this situation are quite different from the classical cosmology case. For a positive potential scalar field coupled with a barotropic fluid, the cosmological autonomous system has five fixed points and one of them is stable if the adiabatic index \(\gamma \) satisfies \(0<\gamma <2\). This leads to the fact that the universe just have one bounce point instead of the singularity which lies in the quantum dominated area and it is caused by the quantum geometry effect. There are four fixed points if one considers a scalar field with a negative potential, but none of them is stable. Therefore, the universe has two kinds of bounce points, one is caused by the quantum geometry effect and the other is caused by the negative potential, the Universe may enter a classical re-collapse after the quantum bounce. This hints that the spatially flat FRW Universe containing a negative potential scalar field is cyclic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tolman, R.C.: Relativity, Thermodynamcis, and Cosmology. Dover, New York

  2. Steinhardt, P.J., Turok, N.: A cyclic model of the univese. Science 296, 1436 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  3. Steinhardt, P.J., Turok, N.: Phys. Rev. D 65, 126003 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  4. Baum, L., Frampton, P.H.: Phys. Rev. Lett. 98, 071301 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  5. Bojowald, M., Maartens, R., Singh, P.: Phys. Rev. D 70, 083517 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  6. Xiong, H.H., Qiu, T.T., Cai, Y.F., Zhang, X.M.: Mod. Phys. Lett. A 24, 1237 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Singh, P., Vandersloot, K., Vereshachagin, G.V.: Phys. Rev. D 74, 043510 (2006)

    Article  ADS  Google Scholar 

  8. Cailleteau, T., Singh, P., Vandersloot, K.: Phys. Rev. D 80, 124013 (2009)

    Article  ADS  Google Scholar 

  9. Bentivegna, E., Pawlowski, T.: Phys. Rev. D 77, 124025 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  10. Heard, I.P.C., Wands, D.: Class. Quantum Grav. 19, 5435 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Steinhardt, P.J., Turok, N.: New Astron. Rev. 49, 43 (2005)

    Article  ADS  Google Scholar 

  12. Martin, Bojowald: Living Rev. Rel. 11, 4 (2008)

    Google Scholar 

  13. Ashtekar, A., Singh, P.: arXiv:1108.0893[gr-qc]

  14. Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  15. Thiemann, T.: Modern Canonical Quantum General Relativity. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  16. Ashtekar, A., Pawlowski, T., Singh, P.: Phys. Rev. D 74, 084003 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  17. Wei, H., Zhang, S.N.: Phys. Rev. D 76, 063005 (2007)

    Article  ADS  Google Scholar 

  18. Fu, X.Y., Yu, H.W., Wu, P.X.: Phys. Rev. D 78, 063001 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  19. Li, S., Ma, Y.G.: Eur. Phys. J. C 68, 227 (2010)

    Article  ADS  Google Scholar 

  20. Lamon, R., Woehr, A.J.: Phys. Rev. D 81, 024026 (2010)

    Article  ADS  Google Scholar 

  21. Samart, D., Gumjudpai, B.: Phys. Rev. D 76, 043514 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  22. Xiao, K., Zhu, J.Y.: Int. J. Mod. Phys. A 25, 4993 (2010)

    Article  ADS  MATH  Google Scholar 

  23. Xiao, K., Zhu, J.Y.: Phys. Rev. D 83, 083501 (2011)

    Article  ADS  Google Scholar 

  24. Copeland, E.J., Mulryne, D.J., Nunes, N.J., Shaeri, M.: Phys. Rev. D 77, 023510 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  25. Lidsey, J.E., Cosmol, J.: Astropart. Phys. 0412, 007 (2004)

    Google Scholar 

  26. Mielczarek, J.: Phys. Lett. B 67, 273–278 (2009)

    ADS  Google Scholar 

  27. Copeland, E.J., Liddle, A.R., Wands, D.: Phys. Rev. D 57, 4686 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11175019 and 11235003) and Xiao was also supported by the National Natural Science Foundation of China (Grant No. 11247282).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Yang Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Xiao, K. & Zhu, JY. Dynamical behaviors of FRW universe containing a positive/negative potential scalar field in loop quantum cosmology. Gen Relativ Gravit 45, 1021–1031 (2013). https://doi.org/10.1007/s10714-013-1511-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-013-1511-3

Keywords

Navigation