Skip to main content
Log in

Dirac field in topologically massive gravity

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We consider a Dirac field coupled minimally to the Mielke–Baekler model of gravity and investigate cosmological solutions in three dimensions. We arrive at a family of solutions which exists even in the limit of vanishing cosmological constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Deser, S., Jackiw, R., Templeton, S.: Ann. Phys. (NY) 140, 372 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  2. Dereli, T., Sarıoğlu, Ö.: Phys. Rev. D 64, 027501 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  3. Nazaroğlu, C., Nutku, Y., Tekin, B.: Phys. Rev. D 83, 124039 (2011)

    Article  ADS  Google Scholar 

  4. Banados, M., Teitelboim, C., Zanelli, J.: Phys. Rev. Lett. 69, 1849 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Mielke, E.W., Baekler, P.: Phys. Lett. A 156, 399 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  6. Garcia, A.A., Hehl, F.W., Heinicke, C., Macias, A.: Phys. Rev. D 67, 124016 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  7. Blagojevic, M., Vasilic, M.: Phys. Rev. D 68, 104023 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  8. Mielke, E.W., Maggiolo, A.R.: Phys. Rev. D 68, 104026 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  9. Obukhov, Y.N.: Phys. Rev. D 68, 124015 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  10. Blagojevic, M., Cvetkovic, B.: Phys. Rev. D 80, 024043 (2009)

    Article  ADS  Google Scholar 

  11. Hehl, F.W., Datta, B.K.: J. Math. Phys. 12, 1334 (1971)

    Article  MathSciNet  ADS  Google Scholar 

  12. Trautman, A.: Bull. Acad. Polon. Scie. 20, 185, 503, 895 (1972).

  13. Hortacsu, M., Özçelik, H.T., Özdemir, N.: \(2+1\) dimensional solution of Einstein Cartan equations. arXiv:0807.4413

  14. Dereli, T., Özdemir, N., Sert, Ö.: Einstein-Cartan-Dirac theory in (1+2)-dimensions. arXiv:1002.0958.

  15. Pronin, P. I., Sardanashvily, G.: Gravity, Particles and Space-time, p. 217. World Scientific, Singapore (1996)

  16. Saha, B.: Phys. Rev. D 74, 124030 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  17. Watanabe, T.: Dirac-field model of inflation in Einstein-Cartan theory, arXiv:0902.1392.

  18. Hearn, A.C.: REDUCE user’s manual version 3.8 (2004). http://www.reduce-algebra.com/docs/reduce.pdf

  19. Schrüfer, E.: EXCALC: A system for doing calculations in the calculus of modern differential geometry (2004). http://www.reduce-algebra.com/docs/excalc.pdf

  20. Goenner, H., Müller-Hoissen, F.: Class. Quantum Gravit. 1, 651 (1984)

    Article  ADS  Google Scholar 

  21. Banerjee, R., Gangopadhyay, S., Mukherjee, P., Roy, D.: JHEP 1002, 075 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  22. Santamaria, R.C., Edelstein, J.D., Garbarz, A., Giribet, G.E.: Phys. Rev. D 83, 124032 (2011)

    Article  ADS  Google Scholar 

  23. Seitz, M.: Class. Quant. Grav. 2, 919 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  24. Dimakis, A., Muller-Hoissen, F.: J. Math. Phys. 26, 1040 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Baekler, P., Seitz, M., Winkelmann, V.: Class. Quantum Gravit. 5, 479 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Dereli, T., Tucker, R.W.: Phys. Lett. A 82, 229 (1981)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muzaffer Adak.

Appendix: Irreducible decompositions

Appendix: Irreducible decompositions

In this section we give briefly the irreducible pieces of torsion, contortion and curvature in three dimensions. Firstly torsion which has nine components can be decomposed

$$\begin{aligned} \underbrace{T^a}_{\# 9} = \underbrace{ {}^{(1)}T^a}_{\# 5} + \underbrace{{}^{(2)}T^a}_{\# 3} + \underbrace{{}^{(3)}T^a}_{\# 1} \end{aligned}$$
(39)

where \({}^{(2)}T^a = - \frac{1}{2} (\iota _b T^b) \wedge e^a, {}^{(3)}T^a = \frac{1}{3} \iota ^a (e_b \wedge T^b)\) and \({}^{(1)}T^a = T^a - {}^{(2)}T^a - {}^{(3)}T^a\). In this section the notation with the number under a brace is for the number of components of that part. They have the properties, \({}^{(1)}T^a \wedge e_a = {}^{(2)}T^a \wedge e_a =0\) and \(\iota _a {}^{(1)}T^a = \iota _a {}^{(3)}T^a = 0\). Our choice (25) corresponds to

$$\begin{aligned} ^{(1)}T^{a}=0, \ \ ^{(2)}T^{a}= u\left(\begin{array}{c} e^{01}\\ 0\\ -e^{12} \\ \end{array} \right), \ \ ^{(3)}T^{a}=v\left(\begin{array}{c} e^{12}\\ e^{02}\\ -e^{01} \\ \end{array} \right) \end{aligned}$$
(40)

which means \(4=3\oplus 1\). After the solution (32) we are left only with \({}^{(3)}T^{a}\).

Secondly one can decompose the contortion having nine components

$$\begin{aligned} \underbrace{K_{ab}}_{\# 9}=\underbrace{{}^{(1)}K_{ab}}_{\# 5} + \underbrace{{}^{(2)}K_{ab}}_{\# 3} + \underbrace{{}^{(3)}K_{ab}}_{\#1} \end{aligned}$$
(41)

where \({}^{(2)}K_{ab}=\frac{1}{2}[e_a \wedge (\iota ^cK_{cb}) - e_b \wedge (\iota ^cK_{ca})], {}^{(3)}K_{ab}=-\frac{1}{6}\iota _{ab} (K_{cd}\wedge e^{cd})\) and \({}^{(1)}K_{ab} = K_{ab} - {}^{(2)}K_{ab} - {}^{(3)}K_{ab}\). They have the properties \(\iota _a{}^{(1)}K^{ab}=\iota _a{}^{(3)}K^{ab}=0\) and \( {}^{(1)}K_{ab} \wedge e^{ab} = {}^{(2)}K_{ab} \wedge e^{ab}=0\). For our case (26) we possess again \({}^{(1)}K_{ab}=0\), but nonzero \({}^{(2)}K_{ab}\) and \({}^{(3)}K_{ab}\), i.e. \(4=3\oplus 1\). Besides after the solution (32) only \({}^{(3)}K_{ab}\) survives.

Finally one can split the curvature with nine components

$$\begin{aligned} \underbrace{R_{ab}}_{\# 9}=\underbrace{{}^{(1)}R_{ab}}_{\# 5} + \underbrace{{}^{(2)}R_{ab}}_{\# 3} + \underbrace{{}^{(3)}R_{ab}}_{\#1} \end{aligned}$$
(42)

where \({}^{(2)}R_{ab}=\frac{1}{2}(e_a \wedge \iota _b - e_b \wedge \iota _a)(e^c \wedge R_c), {}^{(3)}R_{ab}=\frac{1}{6} R e_{ab}\) and \({}^{(1)}R_{ab} = R_{ab} - {}^{(2)}R_{ab} - {}^{(3)}R_{ab}\) with \(R_a = \iota ^bR_{ba}\) and \(R=\iota ^aR_a\). They have the properties \(\iota _{ab}{}^{(1)}R^{ab}=\iota _{ab}{}^{(2)}R^{ab}=0, {}^{(1)}R_{ab} \wedge e^b = {}^{(3)}R_{ab} \wedge e^b=0\) and \(e_b \wedge \iota _a {}^{(1)}R^{ab}=0\). For the solution (32) although all three pieces of curvature and of torsion are nonzero, since \(DT^a =0\) the Ricci tensor is symmetric.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sert, Ö., Adak, M. Dirac field in topologically massive gravity. Gen Relativ Gravit 45, 69–78 (2013). https://doi.org/10.1007/s10714-012-1460-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-012-1460-2

Keywords

Navigation