Skip to main content
Log in

The Lorentz-Dirac equation in complex space-time

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

A hypothetical equation of motion is proposed for Kerr–Newman particles. It’s obtained by analytic continuation of the Lorentz-Dirac equation into complex space-time. A new class of “runaway” solutions are found which are similar to zitterbewegung. Electromagnetic fields generated by these motions are studied, and it’s found that the retarded (and advanced) times are multi-sheeted functions of the field points. This leads to non-uniqueness for the fields. With fixed weighting factors for these multiple roots, the solutions radiate. However, position dependent weighting factors can suppress radiation and allow non-radiating solutions. Motion with external forces are also considered, and radiation suppression is possible there too. These results are relevant for the idea that Kerr–Newman solutions provide insight into elementary particles and into emergent quantum mechanics. They illustrate a type of nascent wave-particle duality and complementarity in a purely classical field theory. Metric curvature due to gravitation is ignored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Adamo, T.M., Kozameh, C., Newman, E.T.: Null geodesic congruences, asymptotically-flat spacetimes and their physical interpretation. Living Rev. Relativ. (www.livingreviews.org/lrr-2009-6) 12(6) (2009)

  2. Adler, S.L.: Quantum Theory as an Emergent Phenomenon: The Statistical Mechanics of Matrix Models as the Precursor of Quantum Field Theory. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  3. Ali, S.T., Gagnon, R., Prugovecki, E.: Conserved quantum probability currents on stochastic phase space. Can. J. Phys. 59(6), 807–811 (1981)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. Barut, A.O., Bracken, A.J.: Zitterbewegung and the internal geometry of the electron. Phys. Rev. D 23(10), 2454 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  5. Bjorken, J.D., Drell, S.D.: Relativistic Quantum Mechanics, 1st edn. McGraw-Hill, New York (1998)

    Google Scholar 

  6. Boyer, T.H.: Random electrodynamics: the theory of classical electrodynamics with classical electromagnetic zero-point radiation. Phys. Rev. D 11, 790–808 (1975)

    Article  ADS  Google Scholar 

  7. de Broglie, L.: Researches sur la théorie des quanta, P.H. d. thesis, english translation. Ph.D. thesis, University of Paris (1924)

  8. Browne, P.: Electron spin and radiative reaction. Ann. Phys. 59, 254–258 (1970)

    Article  ADS  Google Scholar 

  9. Burinskii, A.: Wonderful consequences of the Kerr theorem. arXiv:hep-th/0506006 (2005)

  10. Burinskii, A.: Kerr geometry as space-time structure of the dirac electron. arxiv.org 0712.0577 (2007)

  11. Burinskii, A.: The Dirac-Kerr-Newman electron. Gravit. Cosmol. 14, 109–122 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Burinskii, A.: Regularized Kerr-Newman solution as a gravitating soliton. arXiv:1003.2928 (2010)

  13. Burinskii, A.: Gravitational strings beyond quantum theory: electron as a closed string. arXiv:1109.3872 (2011)

  14. Burinskii, A., Kerr, R.P.: Nonstationary Kerr congruences. arXiv:gr-qc/9501012 (1995)

  15. Calvani, M., Stuchlík, Z.: The latitudinal motion of test particles in the Kerr-Newman dyon space-time. Il Nuovo Cimento B 70(1), 128–140 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  16. Carroll, R.: Gravity and the quantum potential. gr-qc/0406004 (2004)

  17. Carter, B.: Global structure of the Kerr family of gravitational fields. Phys. Rev. 174(5), 1559 (1968)

    Article  MATH  ADS  Google Scholar 

  18. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jerey, D.J., Knuth, D.E.: On the lambert w function. Adv. Comput. Math. 5, 329–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Davidson, M.: The quark-gluon plasma, turbulence, and quantum mechanics. arxiv.org 0807.1990 (2008)

  20. Davidson, M.: The quark-gluon plasma and the stochastic interpretation of quantum mechanics. Phys. E Low Dimens. Syst. Nanostruct. 42(3), 317–322 (2010)

    Article  ADS  Google Scholar 

  21. Davidson, M.P.: Quantum wave equations and non-radiating electromagnetic sources. Ann. Phys. 322(9), 2195–2210 (2007)

    Article  MATH  ADS  Google Scholar 

  22. Debney, G.C., Kerr, R.P., Schild, A.: Solutions of the Einstein and Einstein-Maxwell equations. J. Math. Phys. 10(10), 1842–1854 (1969)

    Article  MathSciNet  ADS  Google Scholar 

  23. Dirac, P.A.M.: Classical theory of radiating electrons. Proceedings of the Royal Society of London, Series A. Math. Phys. Sci. 167(929), 148–169 (1938)

    Article  Google Scholar 

  24. Dirac, P.A.M.: The Principles of Quantum Mechanics. Clarendon Press, Oxford (1978)

    Google Scholar 

  25. Guoanere, M., Spighel, M., Cue, N., Gaillard, M.J., Genre, R., Kirsch, R., Poizat, J.C., Remillieux, J., Catillon, P., Roussel, L.: Experimental observation compatible with the particle internal clock in a channeling experiment. Annales de la Fondation Louis de Broglie 33(1–2), 85–91 (2008)

    Google Scholar 

  26. Hestenes, D.: The zitterbewegung interpretation of quantum mechanics. Found. Phys. 20, 1213–1232 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  27. ’t Hooft, G.: Equivalence relations between deterministic and quantum mechanical systems. J. Stat. Phys. 53(1–2), 323–344 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  28. ’t Hooft, G.: Determinism and dissipation in quantum gravity, erice lecture. arxiv.org hep-th/0003005 (2000)

  29. ’t Hooft, G.: How does god play dice? (Pre-)Determinism at the planck scale. arxiv.org hep-th/0104219 (2001)

  30. ’t Hooft, G.: Determinism beneath quantum mechanics. In: Elitzur, A.C., Dolev, S., Kolenda, N. (eds.) Quo Vadis Quantum Mechanics? The Frontiers Collection, p. 111. Springer, Berlin (2005)

    Google Scholar 

  31. ’t Hooft, G.: Entangled quantum states in a local deterministic theory. arxiv.org 0908.3408 (2009)

  32. Huang, K.: On the zitterbewegung of the Dirac electron. Am. J. Phys. 20(8), 479–484 (1952)

    Article  MATH  ADS  Google Scholar 

  33. Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1999)

    MATH  Google Scholar 

  34. Jackson, J.D.: Comment on preacceleration without radiation. Am. J. Phys. 75(9), 844 (2007)

    Article  ADS  Google Scholar 

  35. Kasuya, M.: Exact solution of a rotating dyon black hole. Phys. Rev. D 25(4), 995 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  36. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Addison-Wesley, Cambridge (1951)

    MATH  Google Scholar 

  37. Lynden-Bell, D.: A magic electromagnetic field. In: Thompson, M.J. (ed) Stellar Astrophys. Fluid Dyn. pp. 369–375 Cambridge University Press, Cambridge (2003)

  38. Lynden-Bell, D.: Electromagnetic magic: the relativistically rotating disk. Phys. Rev. D 70(10), 105017-1–105017-10 (2004)

    ADS  Google Scholar 

  39. Markopoulou, F., Smolin, L.: Quantum theory from quantum gravity. Phys. Rev. 70(12), 124029-1–124029-10 (2004)

    MathSciNet  ADS  Google Scholar 

  40. Morris, M., Thorne, K., Yurtsever, U.: Wormholes, time machines, and the weak energy condition. Phys. Rev. Lett. 61(13), 1446–1449 (1988)

    Article  ADS  Google Scholar 

  41. Morris, M.S.: Wormholes in spacetime and their use for interstellar travel: a tool for teaching general relativity. Am. J. Phys. 56(5), 395 (1988)

    Article  ADS  Google Scholar 

  42. Newman, E.T.: Complex coordinate transformations and the Schwarzschild-Kerr metrics. J. Math. Phys. 14, 774 (1973)

    Article  MATH  ADS  Google Scholar 

  43. Newman, E.T.: Maxwell’s equations and complex Minkowski space. J. Math. Phys. 14(1), 102 (1973)

    Article  ADS  Google Scholar 

  44. Newman, E.T.: Heaven and its properties. Gen. Relativ. Gravit. 7(1), 107–111 (1976)

    Article  ADS  Google Scholar 

  45. Newman, E.T.: Classical, geometric origin of magnetic moments, spin-angular momentum, and the Dirac gyromagnetic ratio. Phys. Rev. D 65(10), 104005-1–104005-8 (2002)

    Article  ADS  Google Scholar 

  46. Newman, E.T., Couch, E., Chinnapared, K., Exton, A., Prakash, A., Torrence, R.: Metric of a rotating, charged mass. J. Math. Phys. 6(6), 918 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  47. Newton, T.D., Wigner, E.P.: Localized states for elementary systems. Rev. Mod. Phys. 21(3), 400–406 (1949)

    Article  MATH  ADS  Google Scholar 

  48. de la Peña, L., Cetto, A.M.: The Quantum Dice: An Introduction to Stochastic Electrodynamics. Kluwer, Dordrecht (1996)

    Google Scholar 

  49. Pekeris, C.L., Frankowski, K.: The electromagnetic field of a Kerr-Newman source. Phys. Rev. A 36(11), 5118 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  50. Penrose, R.: The question of cosmic censorship. J. Astrophys. Astron. 20(3–4), 233–248 (1999)

    Article  ADS  Google Scholar 

  51. Plass, G.N.: Classical electrodynamic equations of motion with radiative reaction. Rev. Mod. Phys. 33(1), 37 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  52. Prugovecki, E.: Consistent formulation of relativistic dynamics for massive spin-zero particles in external fields. Phys. Rev. D 18(10), 3655–3675 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  53. Prugovecki, E.: Stochastic Quantum Mechanics and Quantum Spacetime: Consistent Unification of Relativity and Quantum Theory Based on Stochastic Spaces. Reidel, Dordrecht (1984)

    MATH  Google Scholar 

  54. Ringermacher, H.I.: Intrinsic geometry of curves and the Minkowski force. Phys. Lett. A 74(6), 381–383 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  55. Rohrlich, F.: Classical Charged Particles. Addison-Wesley, Reading (1965)

    MATH  Google Scholar 

  56. Schroeck, F.: Quantum Mechanics on Phase Space. Kluwer Academic Publishing, Dordrecht (1995)

    Google Scholar 

  57. Schroedinger, E.: Über die kräftefreie bewegung in der relativistischen quantenmechanik. Sitzungsberichte der Preussischen Akademie der Wissenschaften. Physikalisch-mathematische Klasse 24, 418–428 (1930)

    Google Scholar 

  58. Scott, T.C., Mann, R., Martinez II, R.E.: General relativity and quantum mechanics: towards a generalization of the lambert w function a generalization of the lambert w function. Appl. Algebra Eng. Commun. Comput. 17(1), 41–47 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  59. Sidharth, B.G.: Revisiting zitterbewegung. Int. J. Theor. Phys. 48(2), 497–506 (2008)

    Article  MathSciNet  Google Scholar 

  60. Streater, R.F., Wightman, A.S.: PCT, Spin and Statistics, and All That. Princeton University Press, Princeton (2000)

    MATH  Google Scholar 

  61. Teitelboim, C.: Splitting of the maxwell tensor: radiation reaction without advanced fields. Phys. Rev. D 1(6), 1572 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  62. Teitelboim, C., Villarroel, D., Weert, C.G.: Classical electrodynamics of retarded fields and point particles. La Rivista del Nuovo Cimento 3(9), 1–64 (1980)

    Article  Google Scholar 

  63. Weinberg, S.: Collapse of the state vector. arXiv:1109.6462 (2011)

  64. Wheeler, J.A., Feynman, R.P.: Interaction with the absorber as the mechanism of radiation. Rev. Mod. Phys. 17(2–3), 157 (1945)

    Article  ADS  Google Scholar 

  65. Wightman, A.S.: On the localizability of quantum mechanical systems. Rev. Mod. Phys. 34(4), 845–872 (1962)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgments

The author acknowledges Alexander Burinskii for informative correspondence and the open source groups supporting the Octave and Maxima computer languages along with the Wolfram-Alpha website which have been used in the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Davidson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davidson, M. The Lorentz-Dirac equation in complex space-time. Gen Relativ Gravit 44, 2939–2964 (2012). https://doi.org/10.1007/s10714-012-1432-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-012-1432-6

Keywords

Navigation