Skip to main content
Log in

Spatial averaging and apparent acceleration in inhomogeneous spaces

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

As an alternative to dark energy that explains the observed acceleration of the universe, it has been suggested that we may be at the center of an inhomogeneous isotropic universe described by a Lemaitre–Tolman–Bondi (LTB) solution of Einstein’s field equations. To test this possibility, it is necessary to solve the null geodesics. In this paper we first give a detailed derivation of a fully analytical set of differential equations for the radial null geodesics as functions of the redshift in LTB models. As an application we use these equaions to show that a positive averaged acceleration a D obtained in LTB models through spatial averaging can be incompatible with cosmological observations. We provide examples of LTB models with positive a D which fail to reproduce the observed luminosity distance D L (z). Since the apparent cosmic acceleration a FLRW is obtained from fitting the observed luminosity distance to a FLRW model we conclude that in general a positive a D in LTB models does not imply a positive a FLRW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Riess, A.G., et al. [Supernova Search Team Collaboration]: Astron. J. 116, 1009 (1998). arXiv:astro-ph/9805201

  2. Perlmutter, S., et al. [Supernova Cosmology Project Collaboration]: Astrophys. J. 517, 565 (1999). arXiv:astro-ph/9812133

  3. Tonry, J.L., et al. [Supernova Search Team Collaboration]: Astrophys. J. 594, 1 (2003). arXiv:astro-ph/0305008

  4. Knop, R.A., et al. [The Supernova Cosmology Project Collaboration]: Astrophys. J. 598, 102 (2003). arXiv:astro-ph/0309368

  5. Barris, B.J., et al.: Astrophys. J. 602, 571 (2004). arXiv:astro-ph/0310843

  6. Riess, A.G., et al. [Supernova Search Team Collaboration]: Astrophys. J. 607, 665 (2004). arXiv:astro-ph/0402512

  7. Bennett, C.L., et al.: Astrophys. J. Suppl. 148, 1 (2003). arXiv:astro-ph/0302207

    Google Scholar 

  8. Spergel, D.N., et al. [WMAP Collaboration]: Astrophys. J. Suppl. 148, 175 (2003). arXiv:astro-ph/0302209

    Google Scholar 

  9. Spergel, D.N., et al.: arXiv:astro-ph/0603449

  10. Nambu, Y., Tanimoto, M.: arXiv:gr-qc/0507057

  11. Kai, T., Kozaki, H., nakao, K.i., Nambu, Y., Yoo, C.M.: Prog. Theor. Phys. 117, 229 (2007). arXiv:gr-qc/0605120

    Google Scholar 

  12. Celerier, M.N.: Astron. Astrophys. 353, 63 (2000). arXiv:astro-ph/9907206

  13. Iguchi, H., Nakamura, T., Nakao, K.I.: Prog. Theor. Phys. 108, 809 (2002). arXiv:astro-ph/0112419

    Google Scholar 

  14. Chung, D.J.H., Romano, A.E.: Phys. Rev. D 74, 103507 (2006). arXiv:astro-ph/0608403

  15. Yoo, C.M., Kai, T., Nakao, K.i.: Prog. Theor. Phys. 120, 937 (2008). arXiv:0807.0932 [astro-ph]

    Google Scholar 

  16. Romano A.E.: Phys. Rev. D 75, 043509 (2007) arXiv:astro-ph/0612002

    Article  MathSciNet  ADS  Google Scholar 

  17. Hirata C.M., Seljak U.: Phys. Rev. D 72, 083501 (2005) arXiv:astro-ph/0503582

    Article  ADS  Google Scholar 

  18. Vanderveld R.A., Flanagan E.E., Wasserman I.: Phys. Rev. D 74, 023506 (2006) arXiv:astro-ph/0602476

    Article  ADS  Google Scholar 

  19. Bolejko K., Andersson L.: JCAP 0810, 003 (2008) arXiv:0807.3577 [astro-ph]

    ADS  Google Scholar 

  20. Lemaitre G.: Ann. Soc. Sci. Brux. Ser. I Sci. Math. Astron. Phys. A 53, 51 (1933)

    Google Scholar 

  21. Tolman R.C.: Proc. Nat. Acad. Sci. 20, 169 (1934)

    Article  ADS  Google Scholar 

  22. Bondi H.: Mon. Not. R. Astron. Soc. 107, 410 (1947)

    MathSciNet  ADS  MATH  Google Scholar 

  23. Palle D.: Nuovo Cim. 117B, 687 (2002) arXiv:astro-ph/0205462

    ADS  Google Scholar 

  24. Buchert, T.: Gen. Relativ. Gravit. 9, 306 (2000). arXiv:gr-qc/0001056

  25. Chuang, C.H., Gu, J.A., Hwang, W.Y.: arXiv:astro-ph/0512651

  26. Starobinsky, A.A.: JETP Lett. 68, 757 (1998)

  27. Starobinsky A.A.: Pisma Zh. Eksp. Teor. Fiz. 68, 721 (1998) arXiv:astro-ph/9810431

    Google Scholar 

  28. Huterer, D., Turner, M.S.: Phys. Rev. D 60, 081301 (1999). arXiv:astro-ph/9808133

  29. Nakamura, T., Chiba, T.: Mon. Not. R. Astron. Soc. 306, 696 (1999). arXiv:astro-ph/9810447

  30. Saini, T.D., Raychaudhury, S., Sahni, V., Starobinsky, A.A.: Phys. Rev. Lett. 85, 1162 (2000). arXiv:astro-ph/9910231

    Google Scholar 

  31. Chiba T., Nakamura T.: Phys. Rev. D 62, 121301 (2000) arXiv:astro-ph/0008175

    Article  ADS  Google Scholar 

  32. Enqvist, K., Mattsson, T.: arXiv:astro-ph/0609120

  33. Tomita K.: Mon. Not. R. Astron. Soc. 326, 287 (2001) arXiv:astro-ph/0011484

    Article  ADS  Google Scholar 

  34. Tomita K.: Prog. Theor. Phys. 106, 929 (2001) arXiv:astro-ph/0104141

    Article  ADS  Google Scholar 

  35. Biswas T., Notari A.: JCAP 0806, 021 (2008) arXiv:astro-ph/0702555

    ADS  Google Scholar 

  36. Alexander, S., Biswas, T., Notari, A., Vaid, D.: arXiv:0712.0370 [astro-ph]

  37. Alnes H., Amarzguioui M., Gron O.: Phys. Rev. D 73, 083519 (2006) arXiv:astro-ph/0512006

    Article  ADS  Google Scholar 

  38. Alnes, H., Amarzguioui, M.: arXiv:astro-ph/0610331

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Enea Romano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romano, A.E., Sasaki, M. Spatial averaging and apparent acceleration in inhomogeneous spaces. Gen Relativ Gravit 44, 353–365 (2012). https://doi.org/10.1007/s10714-011-1277-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-011-1277-4

Keywords

Navigation