Skip to main content
Log in

Three-Dimensional Modeling of the Casing Effect in Onshore Controlled-Source Electromagnetic Surveys

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The presence of steel-cased wells and other infrastructure causes a significant change in the electromagnetic fields that has to be taken into consideration in modeling and interpretation of field data. A realistic and accurate simulation requires the borehole casing to be incorporated into the modeling scheme, which is numerically challenging. Due to the huge conductivity contrast between the casing and surrounding media, a spatial discretization that provides accurate results at different spatial scales ranging from millimeters to hundreds of meters is required. In this paper, we present a full 3D frequency-domain electromagnetic modeling based on a parallel finite-difference algorithm considering the casing effect and investigate its applicability on the borehole-to-surface configuration of the Hontomín CO2 storage site. To guarantee a robust solution of linear systems with highly ill-conditioned matrices caused by huge conductivity contrasts and multiple spatial scales in the model, we employ direct sparse solvers. Different scenarios are simulated in order to study the influence of the source position, conductivity model, and the effect of the steel casing on the measured data. Several approximations of the real hollow casing that allow for a large reduction in the number of elements in the resulting meshes are studied. A good agreement between the modeled responses and the real field data demonstrates the feasibility of simulating casing effects in complex geological areas. The steel casing of the well greatly increases the amplitude of the surface electromagnetic fields and thus improves the signal-to-noise ratio and the sensitivity to deep targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alcalde J, Marzán I, Saura E, Martí D, Ayarza P, Juhlin C, Pérez-Estaún A, Carbonell R (2014) 3D geological characterization of the Hontomín CO2 storage site, Spain: multidisciplinary approach from seismic, well-log and regional data. Tectonophysics 627:6–25

    Article  Google Scholar 

  • Augustin AM, Kennedy WD, Morrison HF, Lee KH (1989) A theoretical study of surface-to-borehole electromagnetic logging in cased holes. Geophysics 54:90–99

    Article  Google Scholar 

  • Balay S, Abhyankar S, Adams M, Brown J, Brune P, Buschelman K, Dalcin L, Eijkhout V, Gropp W, Karpeyev D, Kaushik D, Knepley M, Curfman McInnes L, Rupp K, Smith B, Zampini S, Zhang H, Zhang H (2016) PETSc Users Manual. ANL-95/11—Revision 3.7. http://www.mcs.anl.gov/petsc

  • Bhuyian AH, Landrø M, Johansen SE (2012) 3D CSEM modeling and time-lapse sensitivity analysis for subsurface CO2 storage. Geophysics 77(5):E343–E355

    Article  Google Scholar 

  • Börner JH, Wang F, Weißflog J, Bär M, Görz I, Spitzer K (2015) Multi-method virtual electromagnetic experiments for developing suitable monitoring designs: a fictitious CO2 sequestration scenario in Northern Germany. Geophys Prospect 63(6):1430–1449

    Article  Google Scholar 

  • Buil B, Gomez P, Pena J, Garralon A, Galarza C, Duran JM, Dominguez R, Escribano, A, Turrero MJ, Robredo LM, Sanchez L (2012) Caracterizacion y monitorizacion hidrogeoquimica de los acuiferossuperiores a la formacion almacenamiento de CO2 (Hontomin, Burgos) y actualizacion de la caracterizacion de aguas superficiales. Technical report CIEMAT/DMA/2G010/1/2012

  • Colombo D, McNeice GW (2013) Quantifying surface-to-reservoir electromagnetics for waterflood monitoring in a Saudi Arabian carbonate reservoir. Geophysics 78(6):E281–E297

    Article  Google Scholar 

  • Commer M, Hoversten GM, Um ES (2015) Transient-electromagnetic finite-difference time-domain earth modeling over steel infrastructure. Geophysics 80(2):E147–E162

    Article  Google Scholar 

  • Constable S (2010) Ten years of marine CSEM for hydrocarbon exploration. Geophysics 75(5):75A67–75A81

    Article  Google Scholar 

  • Cuevas N (2012) Casing effect in borehole-surface (surface-borehole) EM fields. In: 74th EAGE conference and exhibition incorporating EUROPEC 2012, EAGE

  • Cuevas N (2014) Analytical solutions of EM fields due to a dipolar source inside an infinite casing. Geophysics 79(5):E231–E241

    Article  Google Scholar 

  • Cuevas N (2016) Field distortion due to surface pipes in surface to borehole electromagnetic. In: 78th EAGE conference and exhibition, EAGE

  • Davydycheva S, Rykhlinski N (2011) Focused-source electromagnetic survey versus standard CSEM: 3D modeling in complex geometries. Geophysics 76(1):F27–F41

    Article  Google Scholar 

  • Escalas M, Queralt P, Ledo J, Marcuello A (2013) Polarisation analysis of magnetotelluric time series using a wavelet-based scheme: a method for detection and characterisation of cultural noise sources. Phys Earth Planet Inter 218:31–50

    Article  Google Scholar 

  • Farquharson CG, Duckworth K, Oldenburg DW (2006) Comparison of integral equation and physical scale modeling of the electromagnetic responses of models with large conductivity contrasts. Geophysics 71(4):G169–G177

    Article  Google Scholar 

  • Grayver AV, Streich R, Ritter O (2014) 3D inversion and resolution analysis of land-based CSEM data from the Ketzin CO 2 storage formation. Geophysics 79(2):E101–E114

    Article  Google Scholar 

  • Hoversten GM, Commer M, Schwarzbach C, Haber E (2016) Multi-physics inversion for reservoir monitoring. In: 78th EAGE conference and exhibition workshops, EAGE

  • Kang S, Seol SJ, Byun J (2012) A feasibility study of CO 2 sequestration monitoring using the mCSEM method at a deep brine aquifer in a shallow sea. Geophysics 77(2):E117–E126

    Article  Google Scholar 

  • Kaufman A (1990) The electrical field in a borehole with casing. Geophysics 55:29–38

    Article  Google Scholar 

  • Key K (2009) 1D inversion of multicomponent, multifrequency marine CSEM data: methodology and synthetic studies for resolving thin resistive layers. Geophysics 74(2):F9–F20

    Article  Google Scholar 

  • Kong FN, Roth F, Olsen PA, Stalheim SO (2009) Casing effects in the sea-to-borehole electromagnetic method. Geophysics 74(5):F77–F87

    Article  Google Scholar 

  • Le CV, Harris BD, Pethick AM, Takougang EMT, Howe B (2016) Semiautomatic and automatic cooperative inversion of seismic and magnetotelluric data. Surv Geophys 37(5):845–896

    Article  Google Scholar 

  • MacGregor L (2012) Integrating seismic, CSEM and well log data for reservoir characterization. Lead Edge 31(3):258–265

    Google Scholar 

  • Márquez M, Jurado MJ (2011) Petrophysical characterization of a CO2 storage reservoir using well logs. Geophys Res Abstr 13:EGU2011–6891–3

  • Muñoz G (2014) Exploring for geothermal resources with electromagnetic methods. Surv Geophys 35(1):101–122

    Article  Google Scholar 

  • Ogaya X, Ledo J, Queralt P, Marcuello Á, Quintà A (2013) First geoelectrical image of the subsurface of the Hontomín site (Spain) for CO2 geological storage: a magnetotelluric 2D characterization. Int J Greenh Gas Con 13:168–179

    Article  Google Scholar 

  • Ogaya X, Queralt P, Ledo J, Marcuello Á, Jones AG (2014) Geoelectrical baseline model of the subsurface of the Hontomín site (Spain) for CO 2 geological storage in a deep saline aquifer: a 3D magnetotelluric characterisation. Int J Greenh Gas Con 27:120–138

    Article  Google Scholar 

  • Ogaya X, Alcalde J, Marzán I, Ledo J, Queralt P, Marcuello A, Martí D, Saura E, Carbonell R, Benjumea B (2016) Joint interpretation of magnetotelluric, seismic and well-log data in Hontomín (Spain). Solid Earth 7:943–958

    Article  Google Scholar 

  • Pardo D, Calo VM, Torres-Verdín C, Nam MJ (2008) Fourier series expansion in a non-orthogonal system of coordinates for the simulation of 3D-DC borehole resistivity measurements. Comput Methods Appl Mech Eng 197(21):1906–1925

    Article  Google Scholar 

  • Puzyrev V, Cela JM (2015) A review of block Krylov subspace methods for multisource electromagnetic modelling. Geophys J Int 202:1241–1252

    Article  Google Scholar 

  • Puzyrev V, Gutierrez N, Rodriguez JE, Hanzich M, de la Puente J (2015) Electromagnetic modeling using a massively parallel software framework. In: 77th EAGE conference and exhibition, EAGE

  • Puzyrev V, Koric S, Wilkin S (2016) Evaluation of parallel direct sparse linear solvers in electromagnetic geophysical problems. Comput Geosci 89:79–87

    Article  Google Scholar 

  • Schenk O, Gärtner K (2004) Solving unsymmetric sparse systems of linear equations with PARDISO. Fut Gen Comput Syst 20:475–487

    Article  Google Scholar 

  • Schenkel CJ, Morrison HF (1994) Electrical resistivity measurement through metal casing. Geophysics 59(7):1072–1082

    Article  Google Scholar 

  • Schwalenberg K, Willoughby E, Mir R, Edwards RN (2005) Marine gas hydrate electromagnetic signatures in Cascadia and their correlation with seismic blank zones. First Break 23(4):57–63

    Google Scholar 

  • Strack KM (2014) Future directions of electromagnetic methods for hydrocarbon applications. Surv Geophys 35(1):157–177

    Article  Google Scholar 

  • Streich R (2016) Controlled-source electromagnetic approaches for hydrocarbon exploration and monitoring on land. Surv Geophys 37(1):47–80

    Article  Google Scholar 

  • Streich R, Becken M, Ritter O (2013) Robust processing of noisy land-based controlled-source electromagnetic data. Geophysics 78(5):E237–E247

    Article  Google Scholar 

  • Swidinsky A, Edwards RN, Jegen M (2013) The marine controlled source electromagnetic response of a steel borehole casing: applications for the NEPTUNE Canada gas hydrate observatory. Geophys Prospect 61(4):842–856

    Article  Google Scholar 

  • Takacs E, Hursan G (1998) A nonconventional geoelectric method using EM field generated by steel-casing excitation. In: 68th SEG annual international meeting expanded abstracts, pp 452–455

  • Tang W, Li Y, Swidinsky A, Liu J (2015) Three-dimensional controlled-source electromagnetic modelling with a well casing as a grounded source: a hybrid method of moments and finite element scheme. Geophys Prospect 63(6):1491–1507

    Article  Google Scholar 

  • Tietze K, Ritter O, Veeken P (2015) Controlled-source electromagnetic monitoring of reservoir oil saturation using a novel borehole-to-surface configuration. Geophys Prospect 63(6):1468–1490

    Article  Google Scholar 

  • Um ES, Commer M, Newman GA, Hoversten GM (2015) Finite element modelling of transient electromagnetic fields near steel-cased wells. Geophys J Int 202(2):901–913

    Article  Google Scholar 

  • Vilamajó E, Queralt P, Ledo J, Marcuello A (2013) Feasibility of monitoring the Hontomín (Burgos, Spain) CO2 storage site using a deep EM source. Surv Geophys 34(4):441–461

    Article  Google Scholar 

  • Vilamajó E, Rondeleux B, Queralt P, Marcuello A, Ledo J (2015) A land controlled-source electromagnetic experiment using a deep vertical electric dipole: experimental settings, processing, and first data interpretation. Geophys Prospect 63(6):1527–1540

    Article  Google Scholar 

  • Wirianto M, Mulder WA, Slob EC (2010) A feasibility study of land CSEM reservoir monitoring in a complex 3-D model. Geophys J Int 181(2):741–755

    Google Scholar 

  • Wu X, Habashy T (1994) Influence of steel casing on EM signals. Geophysics 59:378–390

    Article  Google Scholar 

  • Yang W, Torres-Verdín C, Hou J, Zhang Z (2009) 1D subsurface electromagnetic fields excited by energized steel casing. Geophysics 74(4):E159–E180

    Article  Google Scholar 

  • Zhdanov MS, Endo M, Black N, Spangler L, Fairweather S, Hibbs A, Eiskamp GA, Will R (2013) Electromagnetic monitoring of CO2 sequestration in deep reservoirs. First Break 31(2):71–78

    Google Scholar 

  • Zonge KL, Hughes LJ (1991) Controlled source audiofrequency magnetotellurics. In: Nabighian MN (ed) Electromagnetic methods in applied geophysics, vol 2. Applications, Society of Exploration Geophysicist, Tulsa

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editor-in-Chief, Michael J. Rycroft, Colin Farquharson and one anonymous reviewer for their suggestions that helped to improve the presentation of this paper. This work was supported by computational resources provided by the Pawsey Supercomputing Centre with funding from the Australian Government and the Government of Western Australia. The authors would like to acknowledge the PARDISO developers for providing an academic license. The first author also acknowledges support from the RISE Horizon 2020 European Project GEAGAM (644202). EV, PQ, JL and AM thank Ministerio de Economía y Competitividad and EU Feder Funds through grant CGL2014-54118-C2-1-R. Funding for this Project has been partially provided by the Spanish Ministry of Industry, Tourism and Trade, through the CIUDEN-Fundació Bosch i Gimpera agreement (ALM-09-010) Development and Adaptation of Electromagnetic techniques: control and monitoring of storage sites and in collaboration with the French EM-Hontomin ANR project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Puzyrev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puzyrev, V., Vilamajo, E., Queralt, P. et al. Three-Dimensional Modeling of the Casing Effect in Onshore Controlled-Source Electromagnetic Surveys. Surv Geophys 38, 527–545 (2017). https://doi.org/10.1007/s10712-016-9397-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-016-9397-8

Keywords

Navigation