Skip to main content
Log in

Science and User Needs for Observing Global Mass Transport to Understand Global Change and to Benefit Society

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Satellite gravimetry is a unique measurement technique for observing mass transport processes in the Earth system on a global scale, providing essential indicators of both subtle and dramatic global change. Although past and current satellite gravity missions have achieved spectacular science results, due to their limited spatial and temporal resolution as well as limited length of the available time series numerous important questions are still unresolved. Therefore, it is important to move from current demonstration capabilities to sustained observation of the Earth’s gravity field. In an international initiative performed under the umbrella of the International Union of Geodesy and Geophysics, consensus on the science and user needs for a future satellite gravity observing system has been derived by an international panel of scientists representing the main fields of application, i.e., continental hydrology, cryosphere, ocean, atmosphere and solid Earth. In this paper the main results and findings of this initiative are summarized. The required target performance in terms of equivalent water height has been identified as 5 cm for monthly fields and 0.5 cm/year for long-term trends at a spatial resolution of 150 km. The benefits to meet the main scientific and societal objectives are investigated, and the added value is demonstrated for selected case studies covering the main fields of application. The resulting consolidated view on the required performance of a future sustained satellite gravity observing system represents a solid basis for the definition of technological and mission requirements, and is a prerequisite for mission design studies of future mission concepts and constellations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alley WM, Konikow LF (2015) Bringing GRACE down to earth. Ground Water Tech Comment. doi:10.1111/gwat.12379

    Google Scholar 

  • Bingham RJ, Hughes CW (2009) The signature of the Atlantic meridional overturning circulation in sea level along the east coast of North America. Geophys Res Lett 36:L02603. doi:10.1029/2008GL036215

    Article  Google Scholar 

  • Bingham RJ, Knudsen P, Andersen O, Pail R (2011) An initial estimate of the North Atlantic steady-state geostrophic circulation from GOCE. Geophys Res Lett 38:L01606. doi:10.1029/2010GL045633

    Article  Google Scholar 

  • Boening C, Willis JK, Landerer FW, Nerem RS, Fasullo J (2012) The 2011 La Niña: so strong, the oceans fell. Geophys Res Lett 39:L19602. doi:10.1029/2012GL053055

    Article  Google Scholar 

  • Brockmann JM, Zehentner N, Höck E, Pail R, Loth I, Mayer-Gürr T, Schuh W-D (2014) EGM TIM RL05: an independent geoid with centimeter accuracy purely based on the GOCE mission. Geophys Res Lett 41(22):8089–8099. doi:10.1002/2014GL061904

    Article  Google Scholar 

  • Chambers DP, Wahr J, Tamisiea ME, Nerem RS (2010) Ocean mass from GRACE and glacial isostatic adjustment. J Geophys Res (Solid Earth) 115:B11415. doi:10.1029/2010JB007530

    Article  Google Scholar 

  • Drinkwater MR, Floberghagen R, Haagmans R, Muzi D, Popescu A (2003) GOCE: ESA’s first Earth Explorer Core mission. In: Beutler G, Drinkwater MR, Rummel R, von Steiger R (eds) Earth gravity field from space—from sensors to earth sciences, space sciences series of ISSI, 17:419–432, Kluwer, Dordrecht, ISBN: 1-4020-1408-2

  • Eicker A, Schumacher M, Kusche J, Döll P, Müller Schmied H (2014) Calibration/data assimilation approach for integrating GRACE data into the WaterGAP global hydrology model (WGHM) using an ensemble kalman filter: first results. Surv Geophys 35(6):1285–1309. doi:10.1007/s10712-014-9309-8

    Article  Google Scholar 

  • ESA (2010) Assessment of a next generation mission for monitoring the variations of earth’s gravity. Final Report, ESTEC Contract No. 22643/09/NL/AF, http://emits.esa.int/emits-doc/ESTEC/AO7317_RD4-NGGM_FinalReport_Issue2.pdf

  • ESA (2011) Assessment of a next generation gravity mission to monitor the variations of earth’s gravity field. Final Report, ESTEC Contract No. 22672/09/NL/AF, http://emits.esa.int/emits-doc/ESTEC/AO7317_RD5-Final_Report_Issue_1_w_ESA_dissemination_rights.pdf

  • Famiglietti JS, Rodell M (2013) Water in the balance. Science 340(6138):1300–1301. doi:10.1126/science.1236460

    Article  Google Scholar 

  • Feng W, Zhong M, Lemoine J-M, Biancale R, Hus H-T, Xia J (2013) Evaluation of groundwater depletion in North China using the gravity recovery and climate experiment (GRACE) data and ground-based measurements. Water Resour Res 49(4):2110–2118. doi:10.1002/wrcr.20192

    Article  Google Scholar 

  • Gardner A, Moholdt G, Cogley JG, Wouters B, Arendt AA, Wahr J, Berthier E, Hock R, Pfeffer WT, Kaser G, Ligtenberg SR, Bolch T, Sharp MJ, Hagen JO, van den Broeke MR, Paul F (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340(6134):852–857. doi:10.1126/science.1234532

    Article  Google Scholar 

  • Grippa M, Kergoat L, Frappart F, Araud Q, Boone A, De Rosnay P, Lemoine J-M, Gascoin S, Balsamo G, Ottlé C, Decharme B, Saux-Picart S, Ramillien G (2011) Land water storage variability over West Africa estimated by gravity recovery and climate experiment (GRACE) and land surface models. Water Resour Res 47(5):W05549. doi:10.1029/2009WR008856

    Google Scholar 

  • Groh A, Ewert H, Rosenau R, Fagiolini E, Gruber C, Floricioiu D, Abel Jaber W, Linow S, Flechtner F, Eineder M, Dierking W, Dietrich R (2014) Mass, volume and velocity of the Antarctic ice sheet: present-day changes and error effects. Surv Geophys 35(6):1481–1505. doi:10.1007/s10712-014-9286-y

    Article  Google Scholar 

  • Gruber T, Murböck M, NGGM-D Team (2014) e2.motion - Earth System Mass Transport Mission (Square) - Concept for a Next Generation Gravity Field Mission. Final Report of Project “Satellite Gravimetry of the Next Generation (NGGM-D)”, Deutsche Geodätische Kommission der Bayerischen Akademie der Wissenschaften, Series B, vol. 2014, no. 318, C.H. Beck, ISBN (Print) 978-3-7696-8597-8, http://dgk.badw.de/fileadmin/docs/b-318.pdf

  • Güntner A (2008) Improvement of global hydrological models using GRACE data. Surv Geophys 29(4–5):375–397. doi:10.1007/s10712-008-9038-y

    Article  Google Scholar 

  • Han SC, Riva R, Sauber J, Okal E (2013) Source parameter inversion for recent great earthquakes from a decade-long observation of global gravity fields. J Geophys Res 118(3):1240–1267. doi:10.1002/jgrb.50116

    Article  Google Scholar 

  • Hughes CW, Legrand P (2005) Future benefits of time-varying gravity missions to ocean circulation studies. Earth Moon Planets 94(1–2):73–81. doi:10.1007/s11038-005-0452-6

    Google Scholar 

  • Ivins ER, James TS, Wahr J, Schrama EJO, Landerer FW, Simon KM (2013) Antarctic contribution to sea level rise observed by GRACE with improved GIA correction. J Geophys Res Solid Earth 118(6):3126–3141. doi:10.1002/jgrb.50208

    Article  Google Scholar 

  • Joodaki G, Wahr J, Swenson S (2014) Estimating the human contribution to groundwater depletion in the Middle East, from GRACE data, land surface models, and well observations. Water Resour Res 50:2679–2692. doi:10.1002/2013WR014633

    Article  Google Scholar 

  • Kurtenbach E, Eicker A, Mayer-Gürr T, Holschneider M, Hayn M, Fuhrmann M, Kusche J (2012) Improved daily GRACE gravity field solutions using a Kalman smoother. J Geodyn 59:39–48. doi:10.1016/j.jog.2012.02.006

    Article  Google Scholar 

  • Lehner B, Grill G (2013) Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrol Proc 27(15):2171–2186. doi:10.1002/hyp.9740

    Article  Google Scholar 

  • Lettenmaier DP, Famiglietti JS (2006) Hydrology: water from on high. Nature 444(7119):562–563. doi:10.1038/444562a

    Article  Google Scholar 

  • Leuliette EW, Willis JK (2011) Balancing the sea level budget. Oceanography 24:122–129. doi:10.5670/oceanog.2011.32

    Article  Google Scholar 

  • Li B, Rodell M, Zaitchik BF, Reichle RH, Koster RD, van Dam TM (2012) Assimilation of GRACE terrestrial water storage into a land surface model: evaluation and potential value for drought monitoring in western and central Europe. J Hydrol 446–447:103–115. doi:10.1016/j.jhydrol.2012.04.035

    Article  Google Scholar 

  • Long D, Longuevergne L, Scanlon BR (2014) Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites. Water Resour Res 50:1131–1151. doi:10.1002/2013WR014581

    Article  Google Scholar 

  • Longuevergne L, Scanlon BR, Wilson CW (2010) GRACE Hydrological estimates for small basins: evaluating processing approaches on the High Plains Aquifer, USA. Water Resour Res. doi:10.1029/2009WR008564

    Google Scholar 

  • Lorenz C, Kunstmann H, Devaraju B, Tourian M, Sneeuw N, Riegger J (2014) Large-scale runoff from landmasses: a global assessment of the closure of the hydrological and atmospheric water balances. J Hydrometeor. doi:10.1175/JHM-D-13-0157.1

    Google Scholar 

  • Luthcke SB, Sabaka TJ, Loomis BD, Arendt AA, McCarthy JJ, Camp J (2013) Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution. J Glaciol 59(216):613–631. doi:10.3189/2013JoG12J147

    Article  Google Scholar 

  • Murböck M (2015) Virtual constellations of next generation gravity missions. Dissertation, TU München

  • Murböck M, Pail R, Daras I, Gruber T (2014) Optimal orbits for temporal gravity recovery regarding temporal aliasing. J Geod 88(2):113–126. doi:10.1007/s00190-013-0671-y

    Article  Google Scholar 

  • Nicholls RJ, Cazenave A (2010) Sea-level rise and its impact on coastal zones. Science 18(328):1517–1520. doi:10.1126/science.1185782

    Article  Google Scholar 

  • Pail R, Bruinsma S, Migliaccio F, Förste C, Goiginger H, Schuh W-D, Höck E, Reguzzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sansó F, Tscherning CC (2011) First GOCE gravity field models derived by three different approaches. J Geodesy 85(11):819–843. doi:10.1007/s00190-011-0467-x

    Article  Google Scholar 

  • Panet I, Flury J, Biancale R, Gruber T, Johannessen J, van den Broeke MR, van Dam T, Gegout P, Hughes C, Ramillien G, Sasgen I, Seoane L, Thomas M (2013) Earth system mass transport mission (e.motion): a concept for future earth gravity field measurements from space. Surv Geophys 34(2):141–163. doi:10.1007/s10712-012-9209-8

    Article  Google Scholar 

  • Reager JT, Thomas BF, Famiglietti JS (2014) River basin flood potential inferred using GRACE gravity observations at several months lead time. Nature Geosci 7(8):588–592. doi:10.1038/ngeo2203

    Article  Google Scholar 

  • Reigber C, Balmino G, Schwintzer P, Biancale R, Bode A, Lemoine J-M, Koenig R, Loyer S, Neumayer H, Marty JC, Barthelmes F, Perossanz F (2002) A high quality global gravity field model from CHAMP GPS tracking data and accelerometry (EIGEN-1S). Geophys Res Lett 29(14):37-1–37-4. doi:10.1029/2002GL015064

    Article  Google Scholar 

  • Rio M-H, Mulet S, Picot N (2014) Beyond GOCE for the ocean circulation estimate: synergetic use of altimetry, gravimetry, and in situ data provides new insight into geostrophic and Ekman currents. Geophys Res Lett 41(24):8918–8925. doi:10.1002/2014GL061773

    Article  Google Scholar 

  • Rummel R (2013) Height unification using GOCE. J Geod Sci 2012(2/4):355–362. doi:10.2478/v10156-011-0047-2

    Google Scholar 

  • Saunders P, Coward AC, de Cuevas BA (1999) Circulation of the Pacific Ocean seen in a global ocean model (OCCAM). J Geophys Res 104(C8):18281–18299. doi:10.1029/1999JC900091

    Article  Google Scholar 

  • Saynisch J, Bergmann-Wolf I, Thomas M (2015) Assimilation of GRACE-derived oceanic mass distributions with a global ocean circulation model. J Geodesy 89(2):121–139. doi:10.1007/s00190-014-0766-0

    Article  Google Scholar 

  • Sheffield J, Ferguson CR, Troy TJ, Wood EF, McCabe MF (2009) Closing the terrestrial water budget from satellite remote sensing. Geophys Res Lett 36:L07403. doi:10.1029/2009GL037338

    Article  Google Scholar 

  • Shepherd A, Ivins ER, Geruo A, Barletta VR, Bentley MJ, Bettadpur S, Briggs KH, Bromwich DH, Forsberg R, Galin N, Horwath M, Jacobs S, Joughin I, King MA, Lenaerts JTM, Li J, Ligtenberg SRM, Luckman A, Luthcke SB, McMillan M, Meister R, Milne G, Mouginot J, Muir A, Nicolas JP, Paden J, Payne AJ, Pritchard H, Rignot E, Rott H, Sandberg Sorensen L, Scambos TA, Scheuchl B, Schrama EJO, Smith B, Sundal AV, van Angelen JH, van de Berg WJ, van den Broeke MR, Vaughan DG, Velicogna I, Wahr J, Whitehouse PL, Wingham DJ, Yi D, Young D, Zwally HJ (2012) A reconciled estimate of ice-sheet mass balance. Science 338(6111):1183–1189. doi:10.1126/science.1228102

    Article  Google Scholar 

  • Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9):L09607. doi:10.1029/2004GL019920

    Article  Google Scholar 

  • Tiwari VM, Wahr J, Swenson S (2009) Dwindling groundwater resources in northern India from satellite gravity observations. Geophys Res Lett 36(18):L18401. doi:10.1029/2009GL039401

    Article  Google Scholar 

  • Velicogna I, Sutterley TC, van den Broeke MR (2014) Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophys Res Lett 41(22):8130–8137. doi:10.1002/2014GL061052

    Article  Google Scholar 

  • Visser PNAM, Sneeuw N, Reubelt T, Losch M, van Dam T (2010) Space-borne gravimetric satellite constellations and ocean tides: aliasing effects. Geophys J Int 181(2):789–805. doi:10.1111/j.1365-246X.2010.04,557.x

    Google Scholar 

  • Volpi D, Doblas-Reyes FJ, García-Serrano J, Guemas V (2013) Dependence of the climate prediction skill on spatiotemporal scales: internal versus radiatively-forced contribution. Geophys Res Lett 40:3213–3219. doi:10.1002/grl.50557

    Article  Google Scholar 

  • Watkins M, Flechtner F, Morton P, Massmann F-H, Gaston R, Grunwaldt L (2015) Status of the GRACE follow-on mission. Geophys Res Abstr 17: EGU2015-6616, EGU General Assembly 2015

  • Wiese DN, Visser PNAM, Nerem RS (2011) Estimating low resolution/high frequency gravity fields to reduce temporal aliasing errors. Adv Space Res 48(6):1094–1107. doi:10.1016/j.asr.2011.05.027

    Article  Google Scholar 

  • Willis JK, Chambers DP, Kuo CY, Shum CK (2010) Global sea level rise: recent progress and challenges for the decade to come. Oceanography 23:26–35. doi:10.5670/oceanog.2010.03

    Article  Google Scholar 

  • Wouters B, Bamber JL, van den Broeke MR, Lenaerts JTM, Sasgen I (2013) Limits in detecting acceleration of ice sheet mass loss due to climate variability. Nat Geosci 6(8):613–616. doi:10.1038/ngeo1874

    Article  Google Scholar 

Download references

Acknowledgments

The contributions by more than 70 international scientists to this project initiative is highly acknowledged. We also acknowledge the valuable comments of two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Roland Pail.

Additional information

The names of members of the IUGG Expert Panel are given in Appendix 2

Appendices

Appendix 1

Table 7 presents the relations between geoid height differences, gravity anomalies, vertical gravity gradients (in milliEötvös, mE) and equivalent water heights (EWH) for different spatial resolutions and spherical harmonic (SH) degrees.

Table 7 Conversion between cumulative geoid heights in mm, gravity anomalies in μGal, gravity gradients in mE and total water storage in cm EWH depending on the spatial resolution in km (from Murböck 2015)

Appendix 2

IUGG Expert Panel comprises: Gianpaolo Balsamo, Melanie Becker, Decharme Bertrand, John D. Bolten, Jean-Paul Boy, Michiel van den Broeke, Anny Cazenave, Don Chambers, Tonie van Dam, Michel Diament, Albert van Dijk, Petra Döll, Jörg Ebbing, James Famiglietti, Wei Feng, Rene Forsberg, Nick van de Giesen, Marianne Greff, Jun-Yi Guo, Shin-Chan Han, Edward Hanna, Kosuke Heki, György Hetényi, Steven Jayne, Weiping Jiang, Shuanggen Jin, Georg Kaser, Matt King, Armin Köhl, Harald Kunstmann, Jürgen Kusche, Thorne Lay, Anno Löcher, Scott Luthcke, Marta Marcos, Mark van der Meijde, Valentin Mikhailov, Christian Ohlwein, Fred Pollitz, Yadu Pokhrel, Rui Ponte, Matt Rodell, Cecilie Rolstad-Denby, Himanshu Save, Bridget Scanlon, Sonia Seneviratne, Frederique Seyler, Andrew Shepherd, Tony Song, Wim Spakman, C.K. Shum, Holger Steffen, Wenke Sun, Qiuhong Tang, Virendra Tiwari, Isabella Velicogna, John Wahr, Wouter van der Wal, Lei Wang, Hua Xie, Hsien-Chi Yeh, Pat Yeh, Ben Zaitchik, Victor Zlotnicki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pail, R., Bingham, R., Braitenberg, C. et al. Science and User Needs for Observing Global Mass Transport to Understand Global Change and to Benefit Society. Surv Geophys 36, 743–772 (2015). https://doi.org/10.1007/s10712-015-9348-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-015-9348-9

Keywords

Navigation