Skip to main content

Advertisement

Log in

Evaluation of Internal Structure, Volume and Mass of Glacial Bodies by Integrated LiDAR and Ground Penetrating Radar Surveys: The Case Study of Canin Eastern Glacieret (Julian Alps, Italy)

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

We propose an integrated methodology to image the internal structure, evaluate the volume and estimate the densities of different units within ice bodies, useful for more precise mass estimation of very small glaciers. The procedure encompasses light detection and ranging (LiDAR) and ground penetrating radar (GPR) common offset data. The case study is the Canin Eastern Glacieret (CEG), a very small and maritime glacier in the Eastern Alps, and one of the lowermost glaciers of the European Alps. We calculate both volumetric and mass variations of the analysed ice body by integrating GPR measurements with LiDAR surveys acquired in different years (2006 and 2011). Between 2006 and 2011, the area of the glacieret increased from 8,510 to 17,530 m2 with a gain of 9,016 m2. The observed volume increase has been estimated in 96,350 m3 (+97 %), which corresponds to a positive mass balance of 3.89 m w.e.. This quite unusual finding in the present global warming behaviour is mainly due to the above-average winter accumulation (cw) in the considered period. Moreover, the winter season 2008–2009 represented an exceptional event with a cw equal to 13.38 m, the highest of the available record. Thanks to density estimation, we infer the total mass of the CEG at the time of the geophysical surveys, comparing such results with the ones obtained with available empirical equations, observing an important mass gain in the 5 years considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abermann J, Fischer A, Lambrecht A, Geist T (2010) On the potential of very high-resolution repeat DEMs in glacial and periglacial environment. Cryosphere 4:53–65

    Article  Google Scholar 

  • Ambach W, Eisner H (1966) Analysis of a 20 m firn pit on the Kesselwandferner (Ötztal Alps). J Glaciol 6:223–231

    Google Scholar 

  • Annan AP, Cosway SW, Sigurdsson T (1994) GPR for snow water content. Fifth international conference on GPR. Waterloo Centre for Groundwater Research, Univ. of Waterloo. Ontario, Canada 1994:465–475

    Google Scholar 

  • Arcone SA (1996) High resolution of glacial ice stratigraphy: a ground-penetrating radar study of Pegasus Runway, McMurdo Station, Antarctica. Geophysics 61:1653–1663

    Article  Google Scholar 

  • Arcone SA, Peapples PR, Liu L (2003) Propagation of a ground-penetrating radar (GPR) pulse in a thin-surface waveguide. Geophysics 68:1922–1933

    Article  Google Scholar 

  • Arcone SA, Spikes VB, Hamilton GS (2005) Phase structure of radar stratigraphic horizons within Antarctic firn. Ann Glaciol 41:10–16

    Article  Google Scholar 

  • Arendt AA, Luthcke SB, Larsen CF, Abdalati W, Krabill WB, Beedle MJ (2008) Validation of high-resolution GRACE mascon estimates of glacier mass changes in the St Elias Mountains, Alaska, USA, using aircraft laser altimetry. J Glaciol 54–188:778–787

    Article  Google Scholar 

  • Armando E, Baroni C, Meneghel M (2006) Reports of the glaciological survey 2005. Geografia Fisica e Dinamica Quaternaria 29(2):211–266

    Google Scholar 

  • Avian M, Bauer A (2005) The use of long range laser scanners in terrestrial monitoring of glacier dynamics, Pasterze glacier (Hohe Tauern, Austria). Geophys Res Abstr 7:06779

    Google Scholar 

  • Bælum K, Benn DI (2011) Thermal structure and drainage system of a small valley glacier (Tellbreen, Svalbard), investigated by ground penetrating radar. Cryosphere 5:139–149. doi:10.5194/tc-5-139-2011

    Article  Google Scholar 

  • Bahr DB, Radić V (2012) Significant contribution to total mass from very small glaciers. Cryosphere 6:763–770

    Article  Google Scholar 

  • Bahr DB, Meier MF, Peckham SD (1997) The theoretical basis of volume-area scaling. J Geophys Res 102(B9):20355–20362

    Article  Google Scholar 

  • Birchak JR, Gardner CG, Hipp JE, Victor JM (1974) High dielectric constant microwave probes for sensing soil moisture. Proc IEEE 62:93–98

    Article  Google Scholar 

  • Bradford JH, Harper JT (2005) Wave field migration as a tool for estimating spatially continuous radar velocity and water content in glaciers. Geophys Res Lett 32:L08502

    Article  Google Scholar 

  • Bradford JH, Harper JT, Brown J (2009a) Complex dielectric permittivity measurements from ground-penetrating radar data to measure liquid water content in snow in the pendular regime. Water Resour Res 45:W08403. doi:10.1029/2008WR007341

    Google Scholar 

  • Bradford JH, Nichols J, Mikesell TD, Harper JT (2009b) Continuous profiles of electromagnetic wave velocity and water content in glaciers: an example from Bench Glacier, Alaska, USA. Ann Glaciol 50:1–9

    Article  Google Scholar 

  • Brown J, Bradford JH, Harper JT, Pfeffer WT, Humphrey N, Mosley-Thompson E (2012) Georadar-derived estimates of firn density in the percolation zone, western Greenland ice sheet. J Geophys Res 117:F01011. doi:10.1029/2011JF002089

    Article  Google Scholar 

  • Carturan L, Calligaro S, Guarnieri A, Milan N, Tarolli P, Moro D, Baldassi GA, Cazorzi F, Vettore A., Dalla Fontana G (2011) Terrestrial laser scanner survey of two small glacial formations in the Eastern Italian Alps. Geophys Res Abstr 13, EGU2011-6204-1

  • Carulli GB (2006) Carta geologica del Friuli Venezia Giulia. Scala 1:150000. Regione Autonoma Friuli Venezia Giulia, Direzione Regionale Ambiente e Lavori Pubblici, Servizio Geologico Regionale. S.E.L.C.A., Firenze

  • Chen J, Ohmura A (1990) Estimation of Alpine glacier water resources and their change since the 1870s. Hydrology in mountainous regions. I–Hydrological measurements; the water cycle. In: Proceedings of two Lausanne Symposia, August 1990. International Association of Hydrological Sciences Publication, 193:127–135

  • Cogley JG, Hock R, Rasmussen LA, Arendt AA, Bauder A, Braithwaite RJ, Jansson P, Kaser G, Möller M, Nicholson L, Zemp M (2011) Glossary of Glacier Mass Balance and Related Terms, IHP-VII Technical Documents in Hydrology No. 86, IACS Contribution No. 2, UNESCO-IHP, Paris

  • Colucci RR, Guglielmin M (2014) Precipitation-temperature changes and evolution of a small glacier in the southeastern European Alps during the last 90 years. Int J Climatol. doi:10.1002/joc.4172

    Google Scholar 

  • Dunse T, Schuler TV, Hagen JO, Eiken T, Brandt O, Høgda KA (2009) Recent fluctuations in the extent of the firn area of Austfonna, Svalbard, inferred from GPR. Ann Glaciol 50:155–162

    Article  Google Scholar 

  • Fischer L, Eisenbeiss H, Kääb A, Huggel C, Haeberli W (2011) Monitoring topographic changes in a periglacial high-mountain face using high-resolution DTMs, Monte Rosa East Face, Italian Alps. Permafrost Periglac Process 22:140–152. doi:10.1002/ppp.717

    Article  Google Scholar 

  • Forte E, Pipan M, Casabianca D, Di Cuia R, Riva A (2012) Imaging and characterization of a carbonate hydrocarbon reservoir analogue using GPR attributes. J Appl Geophys 81:76–87

    Article  Google Scholar 

  • Forte E, Dossi M, Colucci RR, Pipan M (2013) A new fast methodology to estimate the density of frozen materials by means of common offset GPR data. J Appl Geophys 99:135–145. doi:10.1016/j.jappgeo.2013.08.013

    Article  Google Scholar 

  • Forte E, Dossi M, Pipan M, Colucci RR (2014) Velocity estimation from common offset GPR data inversion: theory and application to synthetic and real data. Geophys J Int 197–3:1471–1483. doi:10.1093/gji/ggu103

    Article  Google Scholar 

  • Geist T, Stötter J (2007) Documentation of glacier surface elevation change with multi-temporal airborne laser scanner data-case study: Hintereisferner and Kesselwandferner, Tyrol, Austria. ZeitschriftfürGletscherkunde und Glazialgeologie 41:77–106

    Google Scholar 

  • Godio A (2009) Georadar measurements for the snow cover density. Am J Appl Sci 6–3:414–423

    Article  Google Scholar 

  • Granlund N, Lundberg A, Feiccabrino J, Gustafsson D (2009) Laboratory test of snow wetness influence on electrical conductivity measured with ground penetrating radar. Hydrol Res 40–1:33–44

    Article  Google Scholar 

  • Haeberli W, Bosch H, Scherler K, Østrem G, Wallén C (eds.) (1989) World Glacier Inventory: Status 1988. IAHS(ICSI)/UNEP/UNESCO/World Glacier Monitoring Service, Zurich, Switzerland, p 458

  • Harper JT, Bradford JH (2003) Snow stratigraphy over a uniform depositional surface: spatial variability and measurement tools. Cold Reg Sci Technol 37:289–298

    Article  Google Scholar 

  • Hubbard B, Glasser N (2005) Field techniques in glaciology and glacial geomorphology. Chichester, Wiley, UK

    Google Scholar 

  • Hughes PD (2008) Response of a Montenegro glacier to extreme summer heatwaves in 2003 and 2007. Geogr Ann 90A(4):259–267

    Article  Google Scholar 

  • Hughes PD (2010) Little Ice Age glaciers in the Balkans: low altitude glaciation enabled by cooler temperatures and local topoclimatic controls. Earth Surf Proc Land 35:229–241

    Google Scholar 

  • Hughes PD, Woodward JC (2009) Glacial and periglacial environments. In: Woodward JC (ed) The physical geography of the Mediterranean. Oxford University Press, Oxford, pp 353–383

    Google Scholar 

  • Huss M (2013) Density assumption for converting geodetic glacier volume change to mass change. Cryosphere 7:877–887. doi:10.5194/tc-7-877-2013

    Article  Google Scholar 

  • Kellerer-Pirklbauer A, Bauer A, Proske H (2005) Terrestrial laser scanning for glacier monitoring: glaciations changes of the Gößnitzkees Glacier (Schober Group, Austria) between 2000 and 2004. In Bauch K (ed) Proceedings of the 3rd Symposium of the Hohe Tauern National Park for Research in Protected Areas, Kaprun, Austria. September 15–17 2005:97–106

  • Knoll C, Kerschner H (2009) A glacier inventory for South Tyrol, Italy, based on airborne laser scanner data. Ann Glaciol 53:46–52

    Google Scholar 

  • Kodde MP, Pfeifer N, Gorte BGH, Geistd T, Höfle B (2007) Automatic glacier surface analysis from airborne laser scanning. Int Arch Photogramm Remote Sens 36:221–226

    Google Scholar 

  • Kuhn M (1995) The mass balance of very small glaciers. Z Gletscherk Glazialgeol 31(1–2):171–179

    Google Scholar 

  • Looyenga H (1965) Dielectric constants of heterogeneous mixtures. Physica 31:401–406

    Article  Google Scholar 

  • Lundberg A, Richardson-Näslund C, Andersson C (2006) Snow density variations: consequences for ground-penetrating radar. Hydrol Process 20:1483–1495. doi:10.1002/hyp.5944

    Article  Google Scholar 

  • Machguth H, Eisen O, Paul F, Hoelzle M (2006) Strong spatial variability of snow accumulation observed with helicopter-borne GPR on two adjacent alpine glaciers. Geophys Res Lett 33:13. doi:10.1029/2006GL026576

    Article  Google Scholar 

  • Marinelli O (1909) Il limite climatico delle nevi nel gruppo del M. Canin (Alpi Giulie). Zeitschrift für Gletscherkunde, 3(5):334–345

  • Murray T, Booth A, Rippin DM (2007) Water-content of glacier-ice: limitations on estimates from velocity analysis of surface ground-penetrating radar surveys. J Environ Eng Geophys 12–1:87–99. doi:10.2113/JEEG12.1.87

    Article  Google Scholar 

  • Navarro FJ, Glazovsky AF, Macheret YY, Vasilenko EV, Corcuera MI, Cuadrado ML (2005) Ice-volume changes (1936–1990) and structure of Aldegondabreen, Spitsbergen. Ann Glaciol 42:158–162

    Article  Google Scholar 

  • Negy HS, Snehmani C, Thakur NK, Sharma JK (2008) Estimation of snow depth and detection of buried objects using airborne ground penetrating radar in Indian Himalaya. Curr Sci 94–7:865–870

    Google Scholar 

  • Norbiato D, Borga M, Sangati M, Zanon F (2007) Regional frequency analysis of extreme precipitation in the eastern Italian Alps and the August 29, 2003 flash flood. J Hydrol 345:149–166. doi:10.1016/j.jhydrol.2007.07.009

    Article  Google Scholar 

  • Paterson WSB (1994) The physics of glaciers, vol 3. Elsevier, Tarrytown, p 480 ISBN 978-0123694614

    Google Scholar 

  • Pfeffer W, Arendt AA, Bliss A, Bolch T, Cogley JG, Gardner AS, Hagen JO, Hock R, Kaser G, Kienholz C, Miles ES, Moholdt G, Mölg N, Paul F, Radić V, Rastner P, Raup BH, Rich J, Sharp M, The Randolph Consortium (2014) The Randolph Glacier Inventory: a globally complete inventory of glaciers. J Glaciol 60–221:537–552. doi:10.3189/2014JoG13J176

    Article  Google Scholar 

  • Previati M, Godio A, Ferraris S (2011) Validation of spatial variability of snowpack thickness and density obtained with GPR and TDR methods. J Appl Geophys 75:284–293. doi:10.1016/j.jappgeo.2011.07.007

    Article  Google Scholar 

  • Rolstad C, Haug T, Denby B (2009) Spatially integrated geodetic glacier mass balance and its uncertainty based on geostatistical analysis: application to the western Svartisen ice cap, Norway. J Glaciol 55–192:666–680

    Article  Google Scholar 

  • Saintenoy A, Friedt JM, Booth AD, Tolle F, Bernard E, Laffly D, Marlin C, Griselin M (2013) Deriving ice thickness, glacier volume and bedrock morphology of the Austre Lovénbreen (Svalbard) using ground-penetrating radar. Near Surf Geophys 11:253–261

    Article  Google Scholar 

  • Schuler TV, Loe E, Taurisano A, Eiken T, Hagen JO, Kohler J (2007) Calibrating a surface mass-balance model for the Austfonna ice cap, Svalbard. Ann Glaciol 46–1:241–248

    Article  Google Scholar 

  • Serandrei Barbero R, Rabagliati R, Zecchetto S (1989) Analisi delle misure alle fronti dei ghiacciai delle Alpi Giulie e correlazioni con i dati climatici. GeografiaFisica e Dinamica Quaternaria 12:139–149 (in italian)

    Google Scholar 

  • Sibson R (1981) A brief description of natural neighbour interpolation. In: Barnett V (ed) Interpreting multivariate data, Chichester West Sussex, chapter 2. Wiley, New York, pp 21–35 ISBN 9780471280392

    Google Scholar 

  • Singh KK, Datt P, Sharma V, Ganju A, Mishra VD, Parashar A, Chauhan R (2011) Snow depth and snow layer interface estimation using ground penetrating radar. Curr Sci 100–10:1532–1539

    Google Scholar 

  • Stacheder MC, Huebner S, Schlaeger S, Brandelik A (2005) Combined TDR and low frequency permittivity measurements for continuous snow wetness and snow density determination. In: Kupfer K (ed) Electromagnetic aquametry, 16. Springer, Berlin-Heidelberg, pp 367–382

    Chapter  Google Scholar 

  • Stein J, Kane DL (1983) Monitoring the unfrozen water content of soil and snow using time domain reflectometry. Water Resour Res 19(6):1573–1584

    Article  Google Scholar 

  • Tamburini A, Deline P, Jaillet S, Mortara G, Conforti D (2007) Application of terrestrial scanning LiDAR to study the evolution of ice contact Miage Lake and Miage Glacier ice cliff (Mont Blanc massif, Italy). Geophys Res Abstr 9:07718

    Google Scholar 

  • Triglav Čekada M, Zorn M, Colucci RR (2014) Changes in the area of the Canin (Italy) and Triglav glaciers (Slovenia) since 1893 based on archive images and aerial laser scanning. Geodetski vestnik 58(2):257–277

    Google Scholar 

  • Zdanowicz C, Smetny-Sowa A, Fisher D, Schaffer N, Copland L, Eley J, Dupont F (2012) Summer melt rates on Penny Ice Caps, Baffin Island: past and recent trends and implications for regional climate. J Geophys Res Earth Surf 117:F02006

    Article  Google Scholar 

  • Zhao WK, Forte E, Pipan M, Tian G (2013) Ground penetrating radar (GPR) attribute analysis for archaeological prospection. J Appl Geophys 97:107–117. doi:10.1016/j.jappgeo.2013.04.010

    Article  Google Scholar 

Download references

Acknowledgments

We kindly acknowledge Graham Cogley for his constructive review and suggestions as well as an anonymous reviewer: they both allowed to highly improve the quality of this paper. The University of Trieste partially supported this research with the “Finanziamento di Ateneo per progetti di ricerca scientifica, FRA-2012” Grant. We thank the Unione Meteorologica del Friuli Venezia Giulia (UMFVG) and the Civil Defense of Friuli Venezia Giulia for providing us the LiDAR data. We gratefully acknowledge Halliburton through the University of Trieste Landmark academic grant. We kindly thank Francesca Bearzot, Marco B. Bondini, Costanza Del Gobbo, Stefano Pierobon and Marco Venier, students of the University of Trieste, for the fieldwork operations and assistance during geophysical data acquisition. Besides them, we thank also the V Reggimento Aviazione Casarsa “Rigel” for the logistic support. Valuable help during the fieldwork was given also by the Direzione Centrale Risorse Agricole Naturali e Forestali in the persons of Daniele Moro, Luciano Lizzero, Gabriele Amadori and Sergio Buricelli, by the Ente Parco Naturale Regionale delle Prealpi Giulie and by Promotur FVG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Colucci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colucci, R.R., Forte, E., Boccali, C. et al. Evaluation of Internal Structure, Volume and Mass of Glacial Bodies by Integrated LiDAR and Ground Penetrating Radar Surveys: The Case Study of Canin Eastern Glacieret (Julian Alps, Italy). Surv Geophys 36, 231–252 (2015). https://doi.org/10.1007/s10712-014-9311-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-014-9311-1

Keywords

Navigation