Skip to main content

Advertisement

Log in

Assessing the Current Evolution of the Greenland Ice Sheet by Means of Satellite and Ground-Based Observations

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The present study utilises different satellite and ground-based geodetic observations in order to assess the current evolution of the Greenland Ice Sheet (GIS). Satellite gravimetry data acquired by the Gravity Recovery and Climate Experiment are used to derive ice-mass changes for the period from 2003 to 2012. The inferred time series are investigated regarding long-term, seasonal and interannual variations. Laser altimetry data acquired by the Ice, Cloud, and land Elevation Satellite (ICESat) are utilised to solve for linear and seasonal changes in the ice-surface height and to infer independent mass-change estimates for the entire GIS and its major drainage basins. We demonstrate that common signals can be identified in the results of both sensors. Moreover, the analysis of a Global Positioning System (GPS) campaign network in West Greenland for the period 1995–2007 allows us to derive crustal deformation caused by glacial isostatic adjustment (GIA) and by present-day ice-mass changes. ICESat-derived elastic crustal deformations are evaluated comparing them with GPS-observed uplift rates which were corrected for the GIA effect inferred by model predictions. Existing differences can be related to the limited resolution of ICESat. Such differences are mostly evident in dynamical regions such as the Disko Bay region including the rapidly changing Jakobshavn Isbræ, which is investigated in more detail. Glacier flow velocities are inferred from satellite imagery yielding an accelerated flow from 1999 to 2012. Since our GPS observations cover a period of more than a decade, changes in the vertical uplift rates can also be investigated. It turns out that the increased mass loss of the glacier is also reflected by an accelerated vertical uplift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arthern R, Wingham D (1998) The natural fluctuations of firn densification and their effect on the geodetic determination of Ice sheet mass balance. Clim Chang 40(3):605–624

    Article  Google Scholar 

  • Bevan S, Luckman A, Murray T (2012) Glacier dynamics over the last quarter of a century at Helheim, Kangerdlugssuaq and 14 other major Greenland outlet glaciers. Cryosphere 6:923–937. doi:10.5194/tc-6-923-2012

    Article  Google Scholar 

  • Bevis M, Wahr J, Khan S, Madsen F, Brown A, Willis M, Kendrick E, Knudsen P, Box J, van Dam T, Caccamise D, Johns B, Nylen T, Abbott R, White S, Miner J, Forsberg R, Zhou H, Wang J, Wilson T, Bromwich D, Francis O (2012) Bedrock displacements in Greenland manifest ice mass variations, climate cycles and climate change. Proc Natl Acad Sci USA. doi:10.1073/pnas.1204664109

    Google Scholar 

  • Bolch T, Sandberg Sørensen L, Simonsen S, Mölg N, Machguth H, Rastner P, Paul F (2013) Mass loss of Greenland’s glaciers and ice caps 2003–2008 revealed from ICESat laser altimetry data. Geophys Res Lett 40(5):875–881. doi:10.1002/grl.50270

    Article  Google Scholar 

  • Borsa A, Moholdt G, Fricker H, Brunt K (2013) A range correction for ICESat and its potential impact on ice sheet mass balance studies. Cryosphere Discuss 7(4):4287–4319. doi:10.5194/tcd-7-4287-2013

    Article  Google Scholar 

  • van den Broeke M, Bamber J, Ettema J, Rignot E, Schrama E, van de Berg W, van Meijgaard E, Velicogna I, Wouters B (2009) Partitioning recent Greenland mass loss. Science 326(5955):984–986. doi:10.1126/science.1178176

    Article  Google Scholar 

  • Clarke P, Lavallée D, Blewitt G, van Dam T, Wahr J (2005) Effect of gravitational consistency and mass conservation on seasonal surface mass loading models. Geophys Res Lett 32(L08):306. doi:10.1029/2005GL022441

    Google Scholar 

  • Dahle C, Flechtner F, Gruber C, König D, König R, Michalak G, Neumayer KH (2012) GFZ GRACE Level-2 processing standards document for Level-2 product release 0005. Technical report, Potsdam. doi:10.2312/GFZ.b103-12020

  • Dietrich R, Rülke A, Scheinert M (2005) Present-day vertical crustal deformations in west Greenland from repeated GPS observations. Geophys J Int 163(3):865–874. doi:10.1111/j.1365-246X.2005.02766.x

    Article  Google Scholar 

  • Dietrich R, Maas HG, Bäßler M, Rülke A, Richter A, Schwalbe E, Westfeld P (2007) Jakobshavn Isbrae, West Greenland: flow velocities and tidal interaction of the front area from 2004 field observations. J Geophys Res 112:F03S21. doi:10.1029/2006JF000601

    Google Scholar 

  • Döll P, Kaspar F, Lehner B (2003) A global hydrological model for deriving water availability indicators: model tuning and validation. J Hydrol 270:105–134

    Article  Google Scholar 

  • Duan J, Shum C, Guo J, Huang Z (2012) Uncovered spurious jumps in the GRACE atmospheric de-aliasing data: potential contamination of GRACE observed mass change: GRACE atmospheric de-aliasing data. Geophys J Int 191(1):83–87. doi:10.1111/j.1365-246X.2012.05640.x

    Article  Google Scholar 

  • Ewert H, Groh A, Dietrich R (2012a) Volume and mass changes of the Greenland ice sheet inferred from ICESat and GRACE. J Geodyn 59–60:111–123. doi:10.1016/j.jog.2011.06.003

    Article  Google Scholar 

  • Ewert H, Popov S, Richter A, Schwabe J, Scheinert M, Dietrich R (2012) Precise analysis of ICESat altimetry data and assessment of the hydrostatic equilibrium for subglacial Lake Vostok, East Antarctica. Geophys J Int 191(2):557–568. doi:10.1111/j.1365-246X.2012.05649.x

    Article  Google Scholar 

  • Farrell W (1972) Deformation of the earth by surface loads. Rev Geophys Space Phys 10(3):761–797

    Article  Google Scholar 

  • Farrell W, Clark J (1976) On postglacial sea level. Geophys J R Astr Soc 46(3):647–667. doi:10.1111/j.1365-246X.1976.tb01252.x

    Article  Google Scholar 

  • Flechtner F (2007) AOD1B product description document. Technical report, Potsdam

  • Fleming K, Lambeck K (2004) Constraints on the Greenland Ice Sheet since the Last Glacial Maximum from sea-level observations and glacial-rebound models. Quat Sci Rev 23(9–10):1053–1077. doi:10.1016/j.quascirev.2003.11.001

    Article  Google Scholar 

  • Forootan E, Didova O, Schumacher M, Kusche J, Elsaka B (2014) Comparisons of atmospheric mass variations derived from ECMWF reanalysis and operational fields, over 2003–2011. J Geod. 1–12. doi:10.1007/s00190-014-0696-x

  • Fricker H, Borsa A, Minster B, Carabajal C, Quinn K, Bills B (2005) Assessment of ICESat performance at the salar de Uyuni, Bolivia. Geophys Res Lett 32:L21S06. doi:10.1029/2005GL023423

    Google Scholar 

  • Fritsche M, Dietrich R, Knöfel C, Rülke A, Vey S, Rothacher M, Steigenberger P (2005) Impact of higher-order ionospheric terms on GPS estimates. Geophys Res Lett 32(L23):311. doi:10.1029/2005GL024342

    Google Scholar 

  • Fritsche M, Döll P, Dietrich R (2012) Global-scale validation of model-based load deformation of the Earth’s crust from continental watermass and atmospheric pressure variations using GPS. J Geodyn. doi:10.1016/j.jog.2011.04.001

  • Gardner A, Moholdt G, Wouters B, Wolken G, Burgess D, Sharp M, Cogley J, Braun C, Labine C (2011) Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago. Nature 473(7347):357–360. doi:10.1038/nature10089

    Article  Google Scholar 

  • Groh A, Ewert H, Scheinert M, Fritsche M, Rülke A, Richter A, Rosenau R, Dietrich R (2012) An investigation of glacial lsostatic adjustment over the Amundsen Sea sector, West Antarctica. Glob Planet Chang 98–99:45–53. doi:10.1016/j.gloplacha.2012.08.001

    Article  Google Scholar 

  • Harig C, Simons F (2012) Mapping Greenland’s mass loss in space and time. Proc Natl Acad Sci USA 109(49):19,934–19,937. doi:10.1073/pnas.1206785109

    Article  Google Scholar 

  • Howat I, Joughin I, Scambos T (2007) Rapid changes in ice discharge from Greenland outlet glaciers. Science 315:1559–1561. doi:10.1126/science.1138478

    Article  Google Scholar 

  • Howat I, Ahn Y, Joughin I, van den Broeke M, Lenaerts J, Smith B (2011) Mass balance of Greenland’s three largest outlet glaciers, 2000–2010. Geophys Res Lett 38(12):L12,501. doi:10.1029/2011GL047565

    Google Scholar 

  • Ivins E, Watkins M, Yuan DN, Dietrich R, Casassa G, Rülke A (2011) On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003–2009. J Geophys Res 116(B2):B02,403. doi:10.1029/2010JB007607

    Google Scholar 

  • Joughin I, Abdalati W, Fahnestock M (2004) Large fluctuations in speed on Greenland’s Jakobshavn Isbræ glacier. Nature 432:608–610. doi:10.1038/nature03130

    Article  Google Scholar 

  • Joughin I, Smith B, Howat I, Floricioiu D, Alley R, Truffer M, Fahnestock M (2012) Seasonal to decadal scale variations in the surface velocity of Jakobshavn Isbrae, Greenland: observation and model-based analysis. J Geophys Res 117(F2). doi:10.1029/2011JF002110

  • Khan S, Wahr J, Stearns L, Hamilton G, van Dam T, Larson K, Francis O (2007) Elastic uplift in southeast Greenland due to rapid ice mass loss. Geophys Res Lett 34. doi:10.1029/2007GL031468,l21701

  • Khan S, Wahr J, Leuliette E, Larson K, Francis O (2008) Geodetic measurements of postglacial adjustments in Greenland. J Geophys Res 113(B2):B02,402. doi:10.1029/2007JB004956

    Google Scholar 

  • Khan S, Liu L, Wahr J, Howat I, Joughin I, van Dam T, Fleming K (2010a) GPS measurements of crustal uplift near Jakobshavn Isbrae due to glacial ice mass loss. J Geophys Res 115(B9):B09,405. doi:10.1029/2010JB007490

    Google Scholar 

  • Khan SA, Wahr J, Bevis M, Velicogna I, Kendrick E (2010b) Spread of ice mass loss into northwest Greenland observed by GRACE and GPS. Geophys Res Lett 37:6501. doi:10.1029/2010GL042460

    Google Scholar 

  • Kusche J (2007) Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J Geod. doi:10.1007/s00190-007-0143-3

    Google Scholar 

  • Luthcke S, Arendt A, Rowlands D, McCarthy J, Larsen C (2008) Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions. J Glac 54(188):767–777. doi:10.3189/002214308787779933

    Article  Google Scholar 

  • Nguyen A, Herring T (2005) Analysis of ICESat data using Kalman filter and kriging to study height changes in East Antarctica. Geophys Res Lett 32:L23S03. doi:10.1029/2005GL024272

    Article  Google Scholar 

  • Niell A (2000) Improved atmospheric mapping functions for VLBI and GPS. Earth Planet Space 52:699–702

    Article  Google Scholar 

  • NSIDC (2012) National Snow and Ice Data Center: GLAS/ICESat L2 Antarctic and Greenland Ice Sheet Altimetry Data (Release 33). Ftp://n4ftl01u.ecs.nasa.gov/SAN/GLAS/GLA12.033/

  • NSIDC (2013) Correction to the ICESat data product surface elevations due to an error in the range determination from transmit-pulse reference-point selection (Centroid vs Gaussian). http://nsidc.org/data/icesat/pdf/ICESatG-Cstatement

  • Peltier W (1994) Ice age paleotopography. Science 265(5169):195–201. doi:10.1126/science.265.5169.195

    Article  Google Scholar 

  • Peltier W (2004) Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu Rev Earth Planet Sci 32:111–149

    Article  Google Scholar 

  • Podlech S, Weidick A (2004) A catastrophic break-up of the front of Jakobshavn Isbræ, West Greenland, 2002/03. J Glaciol 50(168):153–154. doi:10.3189/172756504781830231

    Article  Google Scholar 

  • Rastner P, Bolch T, Mölg N, Machguth H, Le Bris R, Paul F (2012) The first complete inventory of the local glaciers and ice caps on Greenland. Cryosphere 6(6):1483–1495. doi:10.5194/tc-6-1483-2012

    Article  Google Scholar 

  • Rietbroek R, Fritsche M, Brunnabend SE, Daras I, Kusche J, Schröter J, Flechtner F, Dietrich R (2012) Global surface mass from a new combination of GRACE, modelled OBP and reprocessed GPS data. J Geodyn. doi:10.1016/j.jog.2011.02.003

    Google Scholar 

  • Rignot E, Kanagaratnam P (2006) Changes in the velocity structure of the Greenland Ice sheet. Science 311:986–990. doi:10.1126/science.1121381

    Article  Google Scholar 

  • Rosenau R, Dietrich R, Baessler M (2012) Temporal flow variations of major outlet glaciers in Greenland using landsat data. In: IEEE international geoscience and remote sensing symposium, pp 1557–1560. doi:10.1109/IGARSS.2012.6351100

  • Rülke A, Dietrich R, Fritsche M, Rothacher M, Steigenberger P (2008) Realization of the terrestrial reference system by a reprocessed global GPS network. J Geophys Res 113(B08):403. doi:10.1029/2007JB005231

    Google Scholar 

  • Sasgen I, van den Broeke M, Bamber J, Rignot E, Sørensen L, Wouters B, Martinec Z, Velicogna I, Simonsen S (2012) Timing and origin of recent regional ice-mass loss in Greenland. Earth Planet Sci Lett 333–334:293–303. doi:10.1016/j.epsl.2012.03.033

    Article  Google Scholar 

  • Slobbe D, Ditmar P, Lindenbergh R (2009) Estimating the rates of mass change, ice volume change and snow volume change in Greenland from ICESat and GRACE data. Geophys J Int 176:95–106. doi:10.1111/j.1365-246X.2008.03978.x

    Article  Google Scholar 

  • Sørensen L, Simonsen S, Nielsen K, Lucas-Picher P, Spada G, Adalgeirsdottir G, Forsberg R, Hvidberg C (2011) Mass balance of the Greenland ice sheet (2003–2008) from ICESat data-the impact of interpolation, sampling and firn density. Cryosphere 5(1):173–186. doi:10.5194/tc-5-173-2011

    Article  Google Scholar 

  • Spada G, Stocchi P (2007) SELEN: A Fortran 90 program for solving the ’sea-level equation’. Comput Geosci 33:538–562

    Article  Google Scholar 

  • Steigenberger P, Rothacher M, Dietrich R, Fritsche M, Rülke A, Vey S (2006) Reprocessing of a global GPS network. J Geophys Res 111(B05):402. doi:10.1029/2005JB003747

    Google Scholar 

  • Stocker T, Qin D, Plattner GK, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex V, Midgley P (eds) (2013) Climate change 2013: the physical science basis. Contribution of working Group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge

  • Tapley B, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: Mission overview and early results. Geophys Res Lett 31(L09):607. doi:10.1029/2004GL019920

    Google Scholar 

  • Tushingham A, Peltier W (1991) ICE-3G: a new global model of Late Pleistocene deglaciation based upon geophysical predictions of post-glacial relative sea-level change. J Geophys Res 96:4497–4523

    Article  Google Scholar 

  • Weidick A (1991) Present-day expansion of the southern part of the Inland Ice. Rap Grønl Geol Und 152:73–79

    Google Scholar 

  • Weidick A (1992) Jakobshavn Isbræ area during the climatic optimum. Rap Grønl Geol Und 155:67–72

    Google Scholar 

  • Weidick A (1993) Neoglacial change of ice cover and the related response of the Earth’s crust in West Greenland. Rap Grønl Geol Und 159:121–126

    Google Scholar 

  • Weidick A, Oerter H, Reeh N, Thomsen H, Thorning L (1990) The recession of the Inland Ice margin during the Holocene climatic optimum in the Jakobshavn Isfjord area of West Greenland. Palaeogeogr Palaeoclimatol Palaeoecol 82:389–399. doi:10.1016/S0031-0182(12)80010-1

    Article  Google Scholar 

  • Weidick A, Kelly M, Bennike O (2004) Late Quaternary development of the southern sector of the Greenland Ice Sheet, with particular reference to the Qassimiut lobe. Boreas 33(4):284–299. doi:10.1111/j.1502-3885.2004.tb01242.x

    Article  Google Scholar 

  • Wessel P, Smith W (1998) New, improved version of the Generic Mapping Tools released. EOS Trans AGU 79:579

    Article  Google Scholar 

  • Williams S (2008) CATS: GPS coordinate time series analysis software. GPS Solut 12:147–153

    Article  Google Scholar 

  • Wouters B, Chambers D, Schrama E (2008) GRACE observes small-scale mass loss in Greenland. Geophys Res Lett 35(L20):501. doi:10.1029/2008GL034816

    Google Scholar 

  • Wouters B, Bamber J, van den Broeke M, Lenaerts J, Sasgen I (2013) Limits in detecting acceleration of ice sheet mass loss due to climate variability. Nature Geosci 6(8):613–616. doi:10.1038/ngeo1874

    Article  Google Scholar 

  • Zhang J, Bock Y, Johnson H, Fang P, Williams S, Genrich J, Wdowinski S, Behr J (1997) Southern California Permanent GPS Geodetic Array: error analysis of daily position estimates and site velocities. J Geophys Res 102(B8):18,035–18,055

    Article  Google Scholar 

  • Zwally H, Schutz B, Abdalati W, Abshire J, Bentley C, Brenner A, Bufton J, Dezio J, Hancock D, Harding D, Herring T, Minster B, Quinn K, Palm S, Spinhirne J, Thomas R (2002) ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J Geodyn 34(3–4):405–445. doi:10.1016/S0264-3707(02)00042-X

    Article  Google Scholar 

  • Zwally H, Giovinetto M, Li J, Cornejo H, Beckley M, Brenner A, Saba J, Yi D (2005) Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992–2002. J Glaciol 51(175):509–527

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Research Foundation (DFG) within the Priority Programme SPP1257 “Mass Transport and Mass Distribution in the Earth System”. Our spherical harmonic analyses were performed using the freely available software archive SHTOOLS (shtools.ipgp.fr). The GIA model predictions were calculated using the software package SELEN (Spada and Stocchi 2007). All figures were generated by means of the freely available Generic Mapping Tools (Wessel and Smith 1998). We gratefully acknowledge the comments by two anonymous reviewers which helped to improve the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Groh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groh, A., Ewert, H., Fritsche, M. et al. Assessing the Current Evolution of the Greenland Ice Sheet by Means of Satellite and Ground-Based Observations. Surv Geophys 35, 1459–1480 (2014). https://doi.org/10.1007/s10712-014-9287-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-014-9287-x

Keywords

Navigation