Skip to main content

Advertisement

Log in

The Role of Water Vapour in Earth’s Energy Flows

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Water vapour modulates energy flows in Earth's climate system through transfer of latent heat by evaporation and condensation and by modifying the flows of radiative energy both in the longwave and shortwave portions of the electromagnetic spectrum. This article summarizes the role of water vapour in Earth's energy flows with particular emphasis on (1) the powerful thermodynamic constraint of the Clausius Clapeyron equation, (2) dynamical controls on humidity above the boundary layer (or free-troposphere), (3) uncertainty in continuum absorption in the relatively transparent "window" regions of the radiative spectrum and (4) implications for changes in the atmospheric hydrological cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Latent heat released by condensation is retained in the atmosphere only after the water is removed by precipitation to the surface before re-evaporation in the atmosphere can occur.

  2. The first term is larger than the second term by a factor \(q_{\rm s}p/\epsilon e_{\rm s}=p/(p-e_{\rm s}(1-\epsilon))=1+q_{\rm s}((1/\epsilon)-1) \sim 1+0.6q_s\) assuming fixed pressure, where ε = 0.622 is the ratio of gas constants for dry air and water vapour. For a surface pressure of 1,000 hPa and using the August−Roche–Magnus empirical approximation for e s(T), the first term exceeds the second term by around 0.2% at 273 K and by 1% at 300 K.

References

  • Allan RP (2009) Examination of relationships between clear-sky longwave radiation and aspects of the atmospheric hydrological cycle in climate models, reanalyses, and observations. J Climate 22:3127–4145

    Article  Google Scholar 

  • Allan RP (2011) Human influence on rainfall. Nature 470:344–345

    Article  Google Scholar 

  • Allan RP, Shine KP, Slingo A, Pamment JA (1999) The dependence of clear-sky outgoing longwave radiation on surface temperature and relative humidity. Q J R Meteorol Soc 125:2103–2126

    Article  Google Scholar 

  • Allan RP, Soden BJ, John VO, Ingram W, Good P (2010) Current changes in tropical precipitation. Environ Res Lett 5. doi:10.1088/1748-9326/5/2/025205

  • Andrews T, Forster PM, Boucher O, Bellouin N, Jones A (2010) Precipitation, radiative forcing and global temperature change. Geophys Res Lett 37:L14701. doi:10.1029/2010GL043991

    Article  Google Scholar 

  • Bengtsson L, Hodges KI, Keenlyside N (2009) Will extra-tropical storms intensify in a warmer climate? J Climate 22:2276–2301

    Article  Google Scholar 

  • Brogniez H, Roca R, Picon L (2005) Evaluation of the distribution of subtropical free tropospheric humidity in AMIP-2 simulations using METEOSAT water vapor channel data. Geophys Res Lett 32:L19708

    Article  Google Scholar 

  • Chou C, Chen C (2010) Depth of convection and the weakening of tropical circulation in global warming. J Climate 23:3019–3030

    Article  Google Scholar 

  • Chou C, Tu J, Tan P (2007) Asymmetry of tropical precipitation change under global warming. Geophys Res Lett 34:L17708. doi:10.1029/2007GL030327

    Article  Google Scholar 

  • Folkins I, Kelly KK, Weinstock EM (2002) A simple explanation of the increase in relative humidity between 11 and 14 km in the tropics. J Geophys Res 107:4736. doi:10.1029/2002JD002185

    Article  Google Scholar 

  • Galewsky J, Sobel A, Held I (2005) Diagnosis of subtropical humidity dynamics using tracers of last saturation. J Atmos Sci 62:3353–3367

    Article  Google Scholar 

  • Gastineau G, Soden BJ (2011) Evidence for a weakening of tropical surface wind extremes in response to atmospheric warming. Geophys Res Lett 38:L09706. doi:10.1029/2011GL047138

    Article  Google Scholar 

  • Gimeno L, Drumond A, Nieto R, Trigo RM, Stohl A (2010) On the origin of continental precipitation. Geophys Res Lett 37:L13804

    Article  Google Scholar 

  • Haerter JO, Berg P, Hagemann S (2010) Heavy rain intensity distributions on varying time scales and at different temperatures. J Geophys Res 115:D17102

    Article  Google Scholar 

  • Hardwick-Jones R, Westra S, Sharma A (2010) Observed relationships between extreme sub-daily precipitation, surface temperature, and relative humidity. Geophys Res Lett 37:L22805

    Article  Google Scholar 

  • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Climate 19:5686–5699

    Article  Google Scholar 

  • John VO, Soden BJ (2006) Does convectively-detrained cloud ice enhance water vapor feedback? Geophys Res Lett 33:L20701

    Article  Google Scholar 

  • John VO, Soden BJ (2007) Temperature and humidity biases in global climate models and their impact on climate feedbacks. Geophys Res Lett 34:L18704. doi:10.1029/2007GL030429

    Article  Google Scholar 

  • Knutson TR, Manabe S (1995) Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean-atmosphere model. J Climate 8:2181–2199

    Article  Google Scholar 

  • Lambert FH, Chiang JCH (2007) Control of land-ocean temperature contrast by ocean heat uptake. Geophys Res Lett 34:L13704

    Article  Google Scholar 

  • Lambert FH, Webb MJ (2008) Dependency of global mean precipitation on surface temperature. Geophys Res Lett 35:L16706. doi:10.1029/2008GL034838

    Article  Google Scholar 

  • Lenderink G, van Meijgaard E (2010) Linking increases in hourly precipitation extremes to atmospheric temperature and moisture changes. Environ Res Lett 5:025208

    Article  Google Scholar 

  • Levermann A, Schewe J, Petoukhov V, Held H (2009) Basic mechanism for abrupt monsoon transitions. Proc Nat Acad Sci 106:20,572–20,577

    Google Scholar 

  • Minschwaner K, Dessler AE (2004) Water vapor feedback in the tropical upper troposphere: model results and observations. J Climate 17:1272–1282

    Article  Google Scholar 

  • Mitchell J, Wilson CA, Cunnington WM (1987) On CO2 climate sensitivity and model dependence of results. Q J R Meteorol Soc 113:293–322

    Article  Google Scholar 

  • Muller CJ, O’Gorman PA (2011) An energetic perspective on the regional response of precipitation to climate change. Nat Climate Change 1:266–271

    Article  Google Scholar 

  • O’Gorman PA, Muller CJ (2010) How closely do changes in surface and column water vapor follow Clausius-Clapeyron scaling in climate change simulations. Environ Res Lett 5:025207. doi:10.1088/1748-9326/5/2/025207

    Article  Google Scholar 

  • O’Gorman PA, Schneider T (2009) The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc Nat Acad Sci 106:14,773–14,777

  • O’Gorman PA, Allan RP, Byrne MP, Previdi M (2012) Energetic constraints on precipitation under climate change. Surv Geophys. doi:10.1007/s10712-011-9159-6

  • Pierrehumbert RT (1998) Lateral mixing as a source of subtropical water vapor. Geophys Res Lett 25:151–154

    Article  Google Scholar 

  • Power SB, Kociuba G (2011) What caused the observed 20th century weakening of the Walker circulation? J Climate (in press). doi:10.1175/2011JCLI4101.1

  • Previdi M (2010) Radiative feedbacks on global precipitation. Environ Res Lett 5:025–211

    Article  Google Scholar 

  • Raval A, Ramanathan V (1989) Observational determination of the greenhouse effect. Nature 342:758–761

    Article  Google Scholar 

  • Richter I, Xie SP (2008) The muted precipitation increase in global warming simulations: a surface evaporation perspective. J Geophys Res 113:D24118. doi:10.1029/2008JD010561

    Article  Google Scholar 

  • Roca R, Guzman R, Lemond J, Meijer J, Picon L, Brogniez H (2012) Tropical and extra-tropical influences on the distribution of free tropospheric humidity over the intertropical belt. Surv Geophys (this volume)

  • Semenov V, Bengtsson L (2002) Secular trends in daily precipitation characteristics: greenhouse gas simulation with a coupled AOGCM. Climate Dyn 19:123–140

    Article  Google Scholar 

  • Sherwood SC, Ingram W, Tsushima Y, Satoh M, Roberts M, Vidale PL, O’Gorman PA (2010a) Relative humidity changes in a warmer climate. J Geophys Res 115:D09104. doi:10.1029/2009JD012585

    Article  Google Scholar 

  • Sherwood SC, Roca R, Weckwerth TM, Andronova NG (2010b) Tropospheric water vapor, convection, and climate. Rev Geophys 48:RG2001

    Article  Google Scholar 

  • Shine KP, Ptashnik IV, Rädel G (2012) The water vapour continuum: brief history and recent developments. Surv Geophys (this volume)

  • Simmons AJ, Willett KM, Jones PD, Thorne PW, Dee DP (2010) Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: inferences from reanalyses and monthly gridded observational data sets. J Geophys Res 115:D01110. doi:10.1029/2009JD012442

    Article  Google Scholar 

  • Soden BJ, Held IM (2006) An assessment of climate feedbacks in coupled ocean-atmosphere models. J Climate 19:3354–3360

    Article  Google Scholar 

  • Soden BJ, Vecchi G (2011) The vertical distribution of cloud feedback in coupled ocean-atmosphere models. Geophys Res Lett 38:L12704. doi:10.1029/2011GL047632

    Article  Google Scholar 

  • Sohn BJ, Park SC (2010) Strengthened tropical circulations in past three decades inferred from water vapor transport. J Geophys Res 115:D15112. doi:10.1029/2009JD013713

    Article  Google Scholar 

  • Solomon S, Rosenlof KH, Portmann RW, Daniel JS, Davis SM, Sanford TJ, Plattner GK (2010) Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327:1219–1223

    Article  Google Scholar 

  • Spencer RW, Braswell WD (1997) How dry is the tropical free troposphere? Implications for global warming theory. Bull Am Meterol Soc 78:1097–1106

    Article  Google Scholar 

  • Stephens GL, Ellis TD (2008) Controls of global-mean precipitation increases in global warming GCM experiments. J Climate 21:6141–6155

    Article  Google Scholar 

  • Sugiyama M, Shiogama H, Emori S (2010) Precipitation extreme changes exceeding moisture content increases in MIROC and IPCC climate models. Proc Nat Acad Sci 107:571–575

    Article  Google Scholar 

  • Takahashi K (2009) The global hydrological cycle and atmospheric shortwave absorption in climate models under CO2 forcing. J Climate 22:5667–5675

    Article  Google Scholar 

  • Trenberth KE (2002) Changes in tropical clouds and radiation. Science 296:2095a

    Article  Google Scholar 

  • Trenberth KE (2011) Changes in precipitation with climate change. Climate Res 47:123–138

    Article  Google Scholar 

  • Vecchi GA, Soden BJ, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ (2006) Weakening of tropical pacific atmospheric circulation due to anthropogenic forcing. Nature 441:73–76

    Article  Google Scholar 

  • Wentz FJ, Ricciardulli L, Hilburn K, Mears C (2007) How much more rain will global warming bring? Science 317:233–235

    Article  Google Scholar 

  • Zahn M, Allan RP (2011) Changes in water vapor transports of the ascending branch of the tropical circulation. J Geophys Res 116:D18111. doi:10.1029/2011JD016206

    Article  Google Scholar 

  • Zelinka MD, Hartmann DL (2010) Why is longwave cloud feedback positive? J Geophys Res 115:D16117

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to Paul O’Gorman, Remy Roca, Keith Shine, Brian Soden and two anonymous reviewers for comments and corrections on the original manuscript and for their input, along with B.-J. Sohn, Andrew Dessler and many others, to the International Space Sciences Institute Workshop Session on Observing and modelling Earth’s energy flows. R Allan was supported by the UK Natural Environment Research Council PREPARE project (NE/G015708/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard P. Allan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allan, R.P. The Role of Water Vapour in Earth’s Energy Flows. Surv Geophys 33, 557–564 (2012). https://doi.org/10.1007/s10712-011-9157-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-011-9157-8

Keywords

Navigation