Skip to main content

Advertisement

Log in

Precipitation Changes in High Southern Latitudes from Global Reanalyses: A Cautionary Tale

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The temporal consistency of the moisture fields (precipitation, evaporation and total precipitable water) from five global reanalyses is examined over Antarctica and the Southern Ocean during 1989–2009. This concern is important given that (1) global reanalyses are known to be prone to inhomogeneities and artificial trends caused by changes in the observing system, and (2) the period of study has seen a dramatic increase in the volume of satellite observations available for data assimilation. In particular, the study aims to determine whether the recent reanalyses are suitable for investigating changes in Antarctic surface mass balance. The datasets investigated consist of NCEP-2, JRA-25, ERA-Interim, MERRA and CFSR. Strong evidence of spurious changes is found in NCEP-2, JRA-25, MERRA and CFSR, although the magnitude, spatial patterns and timing of these artifacts vary between the reanalyses. MERRA exhibits a jump in Antarctic precipitation-minus-evaporation (P–E) and in Southern Ocean precipitation in the late 1990s. This jump is related to the introduction of sounding radiances from the Advanced Microwave Sounding Unit (AMSU). The impact of AMSU is also discernible, albeit less pronounced, in CFSR data. It is shown that ERA-Interim likely provides the most realistic depiction of the interannual variability and overall change in Antarctic P–E since 1989. We conclude that the presence of spurious changes is not a solved problem in recent global reanalyses. Caution should continue to be exercised when using these datasets for trend analyses in general, particularly in high southern latitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Warning note on RSS website: http://www.remss.com/ssmi/ssmi_browse.html.

References

  • Adler R, Huffman G, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeor 4:1147–1167

    Article  Google Scholar 

  • Andersson E (2007) Data assimilation in the polar regions. ECMWF Newslett 112:10–15

    Google Scholar 

  • Andersson E, Bauer P, Beljaars A, Chevallier F, Hólm E, Janisková M, Kållberg P, Kelly G, Lopez P, Mcnally A, Moreau E, Simmons AJ, Thépaut JN, Tompkins AM (2005) Assimilation and modeling of the atmospheric hydrological cycle in the ECMWF forecasting system. Bull Amer Meteor Soc 86(3):387–402

    Article  Google Scholar 

  • Arthern RJ, Winebrenner DP, Vaughan DG (2006) Antarctic snow accumulation mapped using polarization of 4.3-cm wavelength microwave emission. J Geophys Res 111:D06107

    Article  Google Scholar 

  • Auligné T, McNally AP, Dee DP (2007) Adaptive bias correction for satellite data in a numerical weather prediction system. Q J Roy Meteor Soc 133(624):631–642

    Article  Google Scholar 

  • Bengtsson L, Hagemann S, Hodges KI (2004a) Can climate trends be calculated from reanalysis data? J Geophys Res 109(D11): D11111

    Google Scholar 

  • Bengtsson L, Hodges KI, Hagemann S (2004b) Sensitivity of the ERA40 reanalysis to the observing system: determination of the global atmospheric circulation from reduced observations. Tellus Ser A 56:456–471

    Article  Google Scholar 

  • Bosilovich MG, Schubert S, Rienecker M, Todling R, Suarez M, Bacmeister J, Gelaro R, Kim GK, Stajner I, Chen J (2006) NASA’s Modern Era Retrospective-analysis for Research and Applications. US CLIVAR Variations 4(2): 5–8, http://www.usclivar.org/Newsletter/VariationsV4N2.pdf

  • Bosilovich MG, Chen J, Robertson FR, Adler RF (2008) Evaluation of precipitation in reanalyses. J Appl Meteor Climatol 47:2279–2299

    Article  Google Scholar 

  • Bouchard A, Rabier F, Guidard V, Karbou F (2010) Enhancements of satellite data assimilation over Antarctica. Mon Weather Rev 138(6):2149–2173

    Article  Google Scholar 

  • Bromwich DH, Fogt RL (2004) Strong trends in the skill of the ERA-40 and NCEP-NCAR reanalyses in the high and middle latitudes of the Southern Hemisphere, 1958–2001. J Climate 17:4603–4619

    Article  Google Scholar 

  • Bromwich DH, Fogt RL, Hodges KI, Walsh JE (2007) A tropospheric assessment of the ERA-40, NCEP, and JRA-25 global reanalyses in the polar regions. J Geophys Res 112(D10): D10111

    Google Scholar 

  • Bromwich DH, Nicolas JP, Monaghan AJ (2011) An assessment of changes in Antarctic and Southern Ocean precipitation since 1989 in contemporary global reanalyses. J Climate Accepted

  • Chelton DB, Wentz FJ (2005) Global microwave satellite observations of sea surface temperature for numerical weather prediction and climate research. Bull Amer Meteor Soc 86(8):1097–1115

    Article  Google Scholar 

  • Cullather RI, Bosilovich MG (2011) The moisture budget of the polar atmosphere in MERRA. J Climate Accepted

  • Cullather RI, Bromwich DH, Van Woert ML (1998) Spatial and temporal variability of Antarctic precipitation from atmospheric methods. J Climate 11(3):334–367

    Article  Google Scholar 

  • Dee D, Uppala S (2008) Variational bias correction in ERA-Interim. ECMWF Tech Mem No 575

  • Dee DP, Uppala S (2009) Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Q J Roy Meteor Soc 135:1830–1841

    Article  Google Scholar 

  • Dee D, Berrisford P, Poli P, Fuentes M (2009) ERA-Interim for climate monitoring. ECMWF Newslett No 119 pp 5–6, http://www.ecmwf.int/publications/newsletters/pdf/119.pdf

  • Eisen O, Frezzotti M, Genthon C, Isaksson E, Magand O, van den Broeke MR, Dixon DA, Ekaykin A, Holmlund P, Kameda T, Karlo L, Kaspari S, Lipenkov VY, Oerter H, Takahashi S, Vaughan DG (2008) Ground-based measurements of spatial and temporal variability of snow accumulation in east antarctica. Rev Geophys 46:RG2001

    Article  Google Scholar 

  • Frezzotti M, Pourchet M, Flora O, Gandolfi S, Gay M, Urbini S, Vincent C, Becagli S, Gragnani R, Proposito M, Severi M, Traversi R, Udisti R, Fily M (2005) Spatial and temporal variability of snow accumulation in East Antarctica from traverse data. J Glaciol 51(172):113–124

    Article  Google Scholar 

  • Frezzotti M, Urbini S, Proposito M, Scarchilli C, Gandolfi S (2007) Spatial and temporal variability of surface mass balance near Talos Dome, East Antarctica. J Geophys Res 112(F2): F02032

    Google Scholar 

  • Genthon C, Lardeux P, Krinner G (2007) The surface accumulation and ablation of a coastal blue-ice area near Cap Prudhomme, Terre Adelie, Antarctica. J Glaciol 53(183):635–645

    Article  Google Scholar 

  • Guedj S, Karbou F, Rabier F, Bouchard A (2010) Toward a better modelling of surface emissivity to improve AMSU data assimilation over Antarctica. IEEE Trans Geosci Remote Sens 48(4):1976–1985

    Article  Google Scholar 

  • Haimberger L (2007) Homogenization of radiosonde temperature time series using innovation statistics. J Climate 20(7):1377–1403

    Article  Google Scholar 

  • Hines KM, Bromwich DH, Marshall GJ (2000) Artificial surface pressure trends in the NCEP/NCAR reanalysis over the Southern Ocean and Antarctica. J Climate 13:39403952

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-Year Reanalysis Project. Bull Amer Meteor Soc 77(3):437–471

    Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II Reanalysis (R-2). Bull Amer Meteor Soc 83:1631–1643

    Article  Google Scholar 

  • Kaspari S, Mayewski PA, Dixon DA, Spikes VB, Sneed SB, Handley MJ, Hamilton GS (2004) Climate variability in West Antarctica derived from annual accumulation-rate records from ITASE firn/ice cores. Ann Glaciol 39:585–594

    Article  Google Scholar 

  • Kleist DT, Parrish DF, Derber JC, Treadon R, Wu WS, Lord S (2009) Introduction of the GSI into the NCEP Global Data Assimilation System. Weather Forecast 24(6):1691–1705

    Article  Google Scholar 

  • Lemke P et al (2007) Observations: changes in snow, ice and frozen ground. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Liston GE, Winther JG (2005) Antarctic surface and subsurface snow and ice melt fluxes. J Climate 18(10):1469–1481

    Article  Google Scholar 

  • Marshall GJ (2002) Trends in Antarctic geopotential height and temperature: a comparison between radiosonde and NCEP-NCAR reanalysis data. J Climate 15:659–674

    Article  Google Scholar 

  • Meehl GA et al (2007) Global climate projections. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Monaghan AJ, Bromwich DH, Fogt RL, Wang SH, Mayewski PA, Dixon DA, Ekaykin A, Frezzotti M, Goodwin I, Isaksson E, Kaspari SD, Morgan VI, Oerter H, Van Ommen TD, Van der Veen CJ, Wen J (2006a) Insignificant change in Antarctic snowfall since the international geophysical year. Science 313(5788):827–831

    Article  Google Scholar 

  • Monaghan AJ, Bromwich DH, Wang SH (2006b) Recent trends in Antarctic snow accumulation from Polar MM5 simulations. Philos Trans R Soc Ser A 364:1683–1708

    Article  Google Scholar 

  • Nicholls RJ, Cazenave A (2010) Sea-level rise and its impact on coastal zones. Science 328(5985):1517–1520

    Article  Google Scholar 

  • Onogi K, Tsutsui J, Koide H, Sakamoto M, Kobayashi S, Hatsushika H, Matsumoto T, Yamazaki N, Kamahori H, Takahashi K, Kadokura S, Wada K, Kato K, Oyama R, Ose T, Mannoji N, Taira R (2007) The JRA-25 reanalysis. J Met Soc Jpn 85(3):369–432

    Article  Google Scholar 

  • Parkinson C (2003) Aqua: an earth-observing satellite mission to examine water and other climate variables. IEEE Trans Geosci Remote Sens 41(2):173–183

    Article  Google Scholar 

  • Poli P, Healy SB, Dee DP (2010) Assimilation of global positioning system radio occultation data in the ECMWF ERA-Interim reanalysis. Q J Roy Meteor Soc 136(653):1972–1990

    Article  Google Scholar 

  • Rabier F et al (2010) The Concordiasi project in Antarctica. Bull Amer Meteor Soc 91(1):69–86

    Article  Google Scholar 

  • Rienecker MM, Suarez M, Todling R, Bacmeister J, Takacs L, Liu HC, Gu W, Sienkiewicz M, Koster R, Gelaro R, Stajner I, Nielsen J (2008) The GEOS-5 data assimilation system—documentation of versions 5.0.1, 5.1.0, and 5.2.0. Tech. rep., NASA, USA

    Google Scholar 

  • Saha S et al (2010) The NCEP climate forecast system reanalysis. Bull Amer Meteor Soc 91(8):1015–1057

    Article  Google Scholar 

  • Scarchilli C, Frezzotti M, Grigioni P, De Silvestri L, Agnoletto L, Dolci S (2010) Extraordinary blowing snow transport events in East Antarctica. Climate Dyn 34(7):1195–1206

    Article  Google Scholar 

  • Schlosser E, Manning KW, Powers JG, Duda MG, Birnbaum G, Fujita K (2010) Characteristics of high-precipitation events in Dronning Maud Land, Antarctica. J Geophys Res 115(D14): D14107

    Google Scholar 

  • Simmons A, Uppala S, Dee D, Kobayashi S (2006) ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newslett No 110 pp 25–35, http://www.ecmwf.int/publications/newsletters/pdf/110rev.pdf

  • Sodemann H, Stohl A (2009) Asymmetries in the moisture origin of Antarctic precipitation. Geophys Res Lett 36: L22803

  • Stammerjohn SE, Martinson DG, Smith RC, Yuan X, Rind D (2008) Trends in Antarctic annual sea ice retreat and advance and their relation to El Nino-southern oscillation and southern annular mode variability. J Geophys Res 113: C03S90

  • Tedesco M, Monaghan AJ (2009) An updated Antarctic melt record through 2009 and its linkages to high-latitude and tropical climate variability. Geophys Res Lett 36(18): L18502

    Google Scholar 

  • Thorne PW, Vose RS (2010) Reanalyses suitable for characterizing long-term trends. Bull Amer Meteor Soc 91:353–361

    Article  Google Scholar 

  • Tietäväinen H, Vihma T (2008) Atmospheric moisture budget over Antarctica and the southern ocean based on the ERA-40 reanalysis. Int J Climatol 28:1977–1995

    Article  Google Scholar 

  • Trenberth KE, Fasullo J, Smith L (2005) Trends and variability in column-integrated atmospheric water vapor. Climate Dyn 24:741–758

    Article  Google Scholar 

  • Turner J, Comiso JC, Marshall GJ, Lachlan-Cope TA, Bracegirdle T, Maksym T, Meredith MP, Wang Z, Orr A (2009) Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys Res Lett 36(8): L08502

    Google Scholar 

  • Uppala SM et al (2005) The ERA-40 re-analysis. Q J Roy Meteor Soc 131:2961–3012

    Article  Google Scholar 

  • Uppala S, Dee D, Kobayashi S, Berrisford P, Simmons A (2008) Towards a climate data assimilation system: status update of ERA-Interim. ECMWF Newslett No 115 pp 1218, http://www.ecmwf.int/publications/newsletters/pdf/115rev.pdf

  • Van de Berg WJ, van den Broeke MR, Reijmer CH, van Meijgaard E (2005) Characteristics of the Antarctic surface mass balance, 1958–2002, using a regional atmospheric climate model. Ann Glaciol 41:97–104

    Article  Google Scholar 

  • Van den Broeke M, van de Berg WJ, van Meijgaard E, Reijmer C (2006) Identification of Antarctic ablation areas using a regional atmospheric climate model. J Geophys Res 111: D18110

  • Vasiljevic D, Andersson E, Isaksen L, Garcia-Mendez A (2006) Surface pressure bias correction in data assimilation. ECMWF Newslett No 108 pp 20–27, http://www.ecmwf.int/publications/newsletters/pdf/108.pdf

  • Vaughan DG, Bamber JL, Giovinetto M, Russell J, Cooper APR (1999) Reassessment of net surface mass balance in Antarctica. J Climate 12:933–946

    Article  Google Scholar 

  • Xie P, Arkin P (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteor Soc 78:2539–2558

    Article  Google Scholar 

  • Yin X, Gruber A, Arkin P (2004) Comparison of the GPCP and CMAP merged gauge-satellite monthly precipitation products for the period 1979–2001. J Hydrometeor 5(6):1207–1222

    Article  Google Scholar 

  • Yu L, Weller RA (2007) Objectively analyzed air-sea heat fluxes for the global ice-free oceans (1981–2005). Bull Am Meteor Soc 88(4):527–539

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Subcontract 20020793 from the University Corporation for Atmospheric Research, Grant ANT-0636523 from the National Science Foundation, and by the Center for Remote Sensing of Ice Sheets. The authors would like to thank Andrew Monaghan and Eric Rignot for preliminary discussions, Michael Bosilovich for information regarding MERRA, Dick Dee for information about ERA-Int, Richard Cullather for kindly providing his submitted manuscript, and Sheng-Hung Wang for his valuable help with the data processing. The authors are also grateful to the two anonymous reviewers whose comments improved the initial manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien P. Nicolas.

Additional information

Contribution of Byrd Polar Research Center number 1407.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicolas, J.P., Bromwich, D.H. Precipitation Changes in High Southern Latitudes from Global Reanalyses: A Cautionary Tale. Surv Geophys 32, 475–494 (2011). https://doi.org/10.1007/s10712-011-9114-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-011-9114-6

Keywords

Navigation